|
Java example source code file (mlib_ImageConv_u16nw.c)
The mlib_ImageConv_u16nw.c Java example source code/* * Copyright (c) 2003, 2013, Oracle and/or its affiliates. All rights reserved. * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. * * This code is free software; you can redistribute it and/or modify it * under the terms of the GNU General Public License version 2 only, as * published by the Free Software Foundation. Oracle designates this * particular file as subject to the "Classpath" exception as provided * by Oracle in the LICENSE file that accompanied this code. * * This code is distributed in the hope that it will be useful, but WITHOUT * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License * version 2 for more details (a copy is included in the LICENSE file that * accompanied this code). * * You should have received a copy of the GNU General Public License version * 2 along with this work; if not, write to the Free Software Foundation, * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. * * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA * or visit www.oracle.com if you need additional information or have any * questions. */ /* * FUNCTION * Internal functions for mlib_ImageConv* on U8/S16/U16 types and * MLIB_EDGE_DST_NO_WRITE mask */ #include "mlib_image.h" #include "mlib_c_ImageConv.h" /* This define switches between functions of different data types */ #define IMG_TYPE 3 /***************************************************************/ #if IMG_TYPE == 1 #define DTYPE mlib_u8 #define CONV_FUNC(KERN) mlib_c_conv##KERN##nw_u8 #define CONV_FUNC_I(KERN) mlib_i_conv##KERN##nw_u8 #define DSCALE (1 << 24) #define FROM_S32(x) (((x) >> 24) ^ 128) #define S64TOS32(x) (x) #define SAT_OFF -(1u << 31) #elif IMG_TYPE == 2 #define DTYPE mlib_s16 #define CONV_FUNC(KERN) mlib_conv##KERN##nw_s16 #define CONV_FUNC_I(KERN) mlib_i_conv##KERN##nw_s16 #define DSCALE 65536.0 #define FROM_S32(x) ((x) >> 16) #define S64TOS32(x) ((x) & 0xffffffff) #define SAT_OFF #elif IMG_TYPE == 3 #define DTYPE mlib_u16 #define CONV_FUNC(KERN) mlib_conv##KERN##nw_u16 #define CONV_FUNC_I(KERN) mlib_i_conv##KERN##nw_u16 #define DSCALE 65536.0 #define FROM_S32(x) (((x) >> 16) ^ 0x8000) #define S64TOS32(x) (x) #define SAT_OFF -(1u << 31) #endif /* IMG_TYPE == 1 */ /***************************************************************/ #define BUFF_SIZE 1600 #define CACHE_SIZE (64*1024) /***************************************************************/ #define FTYPE mlib_d64 #ifndef MLIB_USE_FTOI_CLAMPING #define CLAMP_S32(x) \ (((x) <= MLIB_S32_MIN) ? MLIB_S32_MIN : (((x) >= MLIB_S32_MAX) ? MLIB_S32_MAX : (mlib_s32)(x))) #else #define CLAMP_S32(x) ((mlib_s32)(x)) #endif /* MLIB_USE_FTOI_CLAMPING */ /***************************************************************/ #define D2I(x) CLAMP_S32((x) SAT_OFF) /***************************************************************/ #ifdef _LITTLE_ENDIAN #define STORE2(res0, res1) \ dp[0 ] = res1; \ dp[chan1] = res0 #else #define STORE2(res0, res1) \ dp[0 ] = res0; \ dp[chan1] = res1 #endif /* _LITTLE_ENDIAN */ /***************************************************************/ #ifdef _NO_LONGLONG #define LOAD_BUFF(buff) \ buff[i ] = sp[0]; \ buff[i + 1] = sp[chan1] #else /* _NO_LONGLONG */ #ifdef _LITTLE_ENDIAN #define LOAD_BUFF(buff) \ *(mlib_s64*)(buff + i) = (((mlib_s64)sp[chan1]) << 32) | S64TOS32((mlib_s64)sp[0]) #else /* _LITTLE_ENDIAN */ #define LOAD_BUFF(buff) \ *(mlib_s64*)(buff + i) = (((mlib_s64)sp[0]) << 32) | S64TOS32((mlib_s64)sp[chan1]) #endif /* _LITTLE_ENDIAN */ #endif /* _NO_LONGLONG */ /***************************************************************/ typedef union { mlib_d64 d64; struct { mlib_s32 i0; mlib_s32 i1; } i32s; struct { mlib_s32 f0; mlib_s32 f1; } f32s; } d64_2x32; /***************************************************************/ #define BUFF_LINE 256 /***************************************************************/ #define DEF_VARS(type) \ type *adr_src, *sl, *sp = NULL; \ type *adr_dst, *dl, *dp = NULL; \ FTYPE *pbuff = buff; \ mlib_s32 wid, hgt, sll, dll; \ mlib_s32 nchannel, chan1; \ mlib_s32 i, j, c /***************************************************************/ #define LOAD_KERNEL3() \ FTYPE scalef = DSCALE; \ FTYPE k0, k1, k2, k3, k4, k5, k6, k7, k8; \ FTYPE p00, p01, p02, p03, \ p10, p11, p12, p13, \ p20, p21, p22, p23; \ \ while (scalef_expon > 30) { \ scalef /= (1 << 30); \ scalef_expon -= 30; \ } \ \ scalef /= (1 << scalef_expon); \ \ /* keep kernel in regs */ \ k0 = scalef * kern[0]; k1 = scalef * kern[1]; k2 = scalef * kern[2]; \ k3 = scalef * kern[3]; k4 = scalef * kern[4]; k5 = scalef * kern[5]; \ k6 = scalef * kern[6]; k7 = scalef * kern[7]; k8 = scalef * kern[8] /***************************************************************/ #define LOAD_KERNEL(SIZE) \ FTYPE scalef = DSCALE; \ \ while (scalef_expon > 30) { \ scalef /= (1 << 30); \ scalef_expon -= 30; \ } \ \ scalef /= (1 << scalef_expon); \ \ for (j = 0; j < SIZE; j++) k[j] = scalef * kern[j] /***************************************************************/ #define GET_SRC_DST_PARAMETERS(type) \ hgt = mlib_ImageGetHeight(src); \ wid = mlib_ImageGetWidth(src); \ nchannel = mlib_ImageGetChannels(src); \ sll = mlib_ImageGetStride(src) / sizeof(type); \ dll = mlib_ImageGetStride(dst) / sizeof(type); \ adr_src = (type *)mlib_ImageGetData(src); \ adr_dst = (type *)mlib_ImageGetData(dst) /***************************************************************/ #ifndef __sparc #if IMG_TYPE == 1 /* Test for the presence of any "1" bit in bits 8 to 31 of val. If present, then val is either negative or >255. If over/underflows of 8 bits are uncommon, then this technique can be a win, since only a single test, rather than two, is necessary to determine if clamping is needed. On the other hand, if over/underflows are common, it adds an extra test. */ #define CLAMP_STORE(dst, val) \ if (val & 0xffffff00) { \ if (val < MLIB_U8_MIN) \ dst = MLIB_U8_MIN; \ else \ dst = MLIB_U8_MAX; \ } else { \ dst = (mlib_u8)val; \ } #elif IMG_TYPE == 2 #define CLAMP_STORE(dst, val) \ if (val >= MLIB_S16_MAX) \ dst = MLIB_S16_MAX; \ else if (val <= MLIB_S16_MIN) \ dst = MLIB_S16_MIN; \ else \ dst = (mlib_s16)val #elif IMG_TYPE == 3 #define CLAMP_STORE(dst, val) \ if (val >= MLIB_U16_MAX) \ dst = MLIB_U16_MAX; \ else if (val <= MLIB_U16_MIN) \ dst = MLIB_U16_MIN; \ else \ dst = (mlib_u16)val #endif /* IMG_TYPE == 1 */ #endif /* __sparc */ /***************************************************************/ #define KSIZE 3 mlib_status CONV_FUNC(3x3)(mlib_image *dst, const mlib_image *src, const mlib_s32 *kern, mlib_s32 scalef_expon, mlib_s32 cmask) { FTYPE buff[(KSIZE + 2)*BUFF_LINE], *buff0, *buff1, *buff2, *buff3, *buffT; DEF_VARS(DTYPE); DTYPE *sl1; mlib_s32 chan2; mlib_s32 *buffo, *buffi; DTYPE *sl2; #ifndef __sparc mlib_s32 d0, d1; #endif /* __sparc */ LOAD_KERNEL3(); GET_SRC_DST_PARAMETERS(DTYPE); if (wid > BUFF_LINE) { pbuff = mlib_malloc((KSIZE + 2)*sizeof(FTYPE)*wid); if (pbuff == NULL) return MLIB_FAILURE; } buff0 = pbuff; buff1 = buff0 + wid; buff2 = buff1 + wid; buff3 = buff2 + wid; buffo = (mlib_s32*)(buff3 + wid); buffi = buffo + (wid &~ 1); chan1 = nchannel; chan2 = chan1 + chan1; wid -= (KSIZE - 1); hgt -= (KSIZE - 1); adr_dst += ((KSIZE - 1)/2)*(dll + chan1); for (c = 0; c < nchannel; c++) { if (!(cmask & (1 << (nchannel - 1 - c)))) continue; sl = adr_src + c; dl = adr_dst + c; sl1 = sl + sll; sl2 = sl1 + sll; #ifdef __SUNPRO_C #pragma pipeloop(0) #endif /* __SUNPRO_C */ for (i = 0; i < wid + (KSIZE - 1); i++) { buff0[i] = (FTYPE)sl[i*chan1]; buff1[i] = (FTYPE)sl1[i*chan1]; buff2[i] = (FTYPE)sl2[i*chan1]; } sl += KSIZE*sll; for (j = 0; j < hgt; j++) { FTYPE s0, s1; p02 = buff0[0]; p12 = buff1[0]; p22 = buff2[0]; p03 = buff0[1]; p13 = buff1[1]; p23 = buff2[1]; s0 = p02 * k0 + p03 * k1 + p12 * k3 + p13 * k4 + p22 * k6 + p23 * k7; s1 = p03 * k0 + p13 * k3 + p23 * k6; sp = sl; dp = dl; #ifdef __SUNPRO_C #pragma pipeloop(0) #endif /* __SUNPRO_C */ for (i = 0; i <= (wid - 2); i += 2) { #ifdef __sparc #ifdef _NO_LONGLONG mlib_s32 o64_1, o64_2; #else /* _NO_LONGLONG */ mlib_s64 o64; #endif /* _NO_LONGLONG */ #endif /* __sparc */ d64_2x32 dd; p02 = buff0[i + 2]; p12 = buff1[i + 2]; p22 = buff2[i + 2]; p03 = buff0[i + 3]; p13 = buff1[i + 3]; p23 = buff2[i + 3]; LOAD_BUFF(buffi); dd.d64 = *(FTYPE *)(buffi + i); buff3[i ] = (FTYPE)dd.i32s.i0; buff3[i + 1] = (FTYPE)dd.i32s.i1; #ifndef __sparc d0 = D2I(s0 + p02 * k2 + p12 * k5 + p22 * k8); d1 = D2I(s1 + p02 * k1 + p03 * k2 + p12 * k4 + p13 * k5 + p22 * k7 + p23 * k8); s0 = p02 * k0 + p03 * k1 + p12 * k3 + p13 * k4 + p22 * k6 + p23 * k7; s1 = p03 * k0 + p13 * k3 + p23 * k6; dp[0 ] = FROM_S32(d0); dp[chan1] = FROM_S32(d1); #else /* __sparc */ dd.i32s.i0 = D2I(s0 + p02 * k2 + p12 * k5 + p22 * k8); dd.i32s.i1 = D2I(s1 + p02 * k1 + p03 * k2 + p12 * k4 + p13 * k5 + p22 * k7 + p23 * k8); *(FTYPE *)(buffo + i) = dd.d64; s0 = p02 * k0 + p03 * k1 + p12 * k3 + p13 * k4 + p22 * k6 + p23 * k7; s1 = p03 * k0 + p13 * k3 + p23 * k6; #ifdef _NO_LONGLONG o64_1 = buffo[i]; o64_2 = buffo[i+1]; #if IMG_TYPE != 1 STORE2(FROM_S32(o64_1), FROM_S32(o64_2)); #else STORE2(o64_1 >> 24, o64_2 >> 24); #endif /* IMG_TYPE != 1 */ #else /* _NO_LONGLONG */ o64 = *(mlib_s64*)(buffo + i); #if IMG_TYPE != 1 STORE2(FROM_S32(o64 >> 32), FROM_S32(o64)); #else STORE2(o64 >> 56, o64 >> 24); #endif /* IMG_TYPE != 1 */ #endif /* _NO_LONGLONG */ #endif /* __sparc */ sp += chan2; dp += chan2; } for (; i < wid; i++) { p00 = buff0[i]; p10 = buff1[i]; p20 = buff2[i]; p01 = buff0[i + 1]; p11 = buff1[i + 1]; p21 = buff2[i + 1]; p02 = buff0[i + 2]; p12 = buff1[i + 2]; p22 = buff2[i + 2]; buffi[i] = (mlib_s32)sp[0]; buff3[i] = (FTYPE)buffi[i]; #ifndef __sparc d0 = D2I(p00 * k0 + p01 * k1 + p02 * k2 + p10 * k3 + p11 * k4 + p12 * k5 + p20 * k6 + p21 * k7 + p22 * k8); dp[0] = FROM_S32(d0); #else /* __sparc */ buffo[i] = D2I(p00 * k0 + p01 * k1 + p02 * k2 + p10 * k3 + p11 * k4 + p12 * k5 + p20 * k6 + p21 * k7 + p22 * k8); #if IMG_TYPE != 1 dp[0] = FROM_S32(buffo[i]); #else dp[0] = buffo[i] >> 24; #endif /* IMG_TYPE != 1 */ #endif /* __sparc */ sp += chan1; dp += chan1; } buffi[wid] = (mlib_s32)sp[0]; buff3[wid] = (FTYPE)buffi[wid]; buffi[wid + 1] = (mlib_s32)sp[chan1]; buff3[wid + 1] = (FTYPE)buffi[wid + 1]; sl += sll; dl += dll; buffT = buff0; buff0 = buff1; buff1 = buff2; buff2 = buff3; buff3 = buffT; } } #ifdef __sparc #if IMG_TYPE == 1 { mlib_s32 amask = (1 << nchannel) - 1; if ((cmask & amask) != amask) { mlib_ImageXor80(adr_dst, wid, hgt, dll, nchannel, cmask); } else { mlib_ImageXor80_aa(adr_dst, wid*nchannel, hgt, dll); } } #endif /* IMG_TYPE == 1 */ #endif /* __sparc */ if (pbuff != buff) mlib_free(pbuff); return MLIB_SUCCESS; } /***************************************************************/ #ifndef __sparc /* for x86, using integer multiplies is faster */ mlib_status CONV_FUNC_I(3x3)(mlib_image *dst, const mlib_image *src, const mlib_s32 *kern, mlib_s32 scalef_expon, mlib_s32 cmask) { DTYPE *adr_src, *sl, *sp0, *sp1, *sp2; DTYPE *adr_dst, *dl, *dp; mlib_s32 wid, hgt, sll, dll; mlib_s32 nchannel, chan1, chan2; mlib_s32 i, j, c; mlib_s32 shift1, shift2; mlib_s32 k0, k1, k2, k3, k4, k5, k6, k7, k8; mlib_s32 p02, p03, p12, p13, p22, p23; #if IMG_TYPE != 1 shift1 = 16; #else shift1 = 8; #endif /* IMG_TYPE != 1 */ shift2 = scalef_expon - shift1; /* keep kernel in regs */ k0 = kern[0] >> shift1; k1 = kern[1] >> shift1; k2 = kern[2] >> shift1; k3 = kern[3] >> shift1; k4 = kern[4] >> shift1; k5 = kern[5] >> shift1; k6 = kern[6] >> shift1; k7 = kern[7] >> shift1; k8 = kern[8] >> shift1; GET_SRC_DST_PARAMETERS(DTYPE); chan1 = nchannel; chan2 = chan1 + chan1; wid -= (KSIZE - 1); hgt -= (KSIZE - 1); adr_dst += ((KSIZE - 1)/2)*(dll + chan1); for (c = 0; c < chan1; c++) { if (!(cmask & (1 << (chan1 - 1 - c)))) continue; sl = adr_src + c; dl = adr_dst + c; for (j = 0; j < hgt; j++) { mlib_s32 s0, s1; mlib_s32 pix0, pix1; dp = dl; sp0 = sl; sp1 = sp0 + sll; sp2 = sp1 + sll; p02 = sp0[0]; p12 = sp1[0]; p22 = sp2[0]; p03 = sp0[chan1]; p13 = sp1[chan1]; p23 = sp2[chan1]; s0 = p02 * k0 + p03 * k1 + p12 * k3 + p13 * k4 + p22 * k6 + p23 * k7; s1 = p03 * k0 + p13 * k3 + p23 * k6; sp0 += chan2; sp1 += chan2; sp2 += chan2; #ifdef __SUNPRO_C #pragma pipeloop(0) #endif /* __SUNPRO_C */ for (i = 0; i <= (wid - 2); i += 2) { p02 = sp0[0]; p12 = sp1[0]; p22 = sp2[0]; p03 = sp0[chan1]; p13 = sp1[chan1]; p23 = sp2[chan1]; pix0 = (s0 + p02 * k2 + p12 * k5 + p22 * k8) >> shift2; pix1 = (s1 + p02 * k1 + p03 * k2 + p12 * k4 + p13 * k5 + p22 * k7 + p23 * k8) >> shift2; CLAMP_STORE(dp[0], pix0); CLAMP_STORE(dp[chan1], pix1); s0 = p02 * k0 + p03 * k1 + p12 * k3 + p13 * k4 + p22 * k6 + p23 * k7; s1 = p03 * k0 + p13 * k3 + p23 * k6; sp0 += chan2; sp1 += chan2; sp2 += chan2; dp += chan2; } if (wid & 1) { p02 = sp0[0]; p12 = sp1[0]; p22 = sp2[0]; pix0 = (s0 + p02 * k2 + p12 * k5 + p22 * k8) >> shift2; CLAMP_STORE(dp[0], pix0); } sl += sll; dl += dll; } } return MLIB_SUCCESS; } #endif /* __sparc ( for x86, using integer multiplies is faster ) */ /***************************************************************/ #undef KSIZE #define KSIZE 4 mlib_status CONV_FUNC(4x4)(mlib_image *dst, const mlib_image *src, const mlib_s32 *kern, mlib_s32 scalef_expon, mlib_s32 cmask) { FTYPE buff[(KSIZE + 3)*BUFF_LINE]; FTYPE *buff0, *buff1, *buff2, *buff3, *buff4, *buffd, *buffT; FTYPE k[KSIZE*KSIZE]; mlib_s32 d0, d1; FTYPE k0, k1, k2, k3, k4, k5, k6, k7; FTYPE p00, p01, p02, p03, p04, p10, p11, p12, p13, p14, p20, p21, p22, p23, p30, p31, p32, p33; DEF_VARS(DTYPE); DTYPE *sl1; mlib_s32 chan2; mlib_s32 *buffo, *buffi; DTYPE *sl2, *sl3; LOAD_KERNEL(KSIZE*KSIZE); GET_SRC_DST_PARAMETERS(DTYPE); if (wid > BUFF_LINE) { pbuff = mlib_malloc((KSIZE + 3)*sizeof(FTYPE)*wid); if (pbuff == NULL) return MLIB_FAILURE; } buff0 = pbuff; buff1 = buff0 + wid; buff2 = buff1 + wid; buff3 = buff2 + wid; buff4 = buff3 + wid; buffd = buff4 + wid; buffo = (mlib_s32*)(buffd + wid); buffi = buffo + (wid &~ 1); chan1 = nchannel; chan2 = chan1 + chan1; wid -= (KSIZE - 1); hgt -= (KSIZE - 1); adr_dst += ((KSIZE - 1)/2)*(dll + chan1); for (c = 0; c < nchannel; c++) { if (!(cmask & (1 << (nchannel - 1 - c)))) continue; sl = adr_src + c; dl = adr_dst + c; sl1 = sl + sll; sl2 = sl1 + sll; sl3 = sl2 + sll; #ifdef __SUNPRO_C #pragma pipeloop(0) #endif /* __SUNPRO_C */ for (i = 0; i < wid + (KSIZE - 1); i++) { buff0[i] = (FTYPE)sl[i*chan1]; buff1[i] = (FTYPE)sl1[i*chan1]; buff2[i] = (FTYPE)sl2[i*chan1]; buff3[i] = (FTYPE)sl3[i*chan1]; } sl += KSIZE*sll; for (j = 0; j < hgt; j++) { d64_2x32 dd; /* * First loop on two first lines of kernel */ k0 = k[0]; k1 = k[1]; k2 = k[2]; k3 = k[3]; k4 = k[4]; k5 = k[5]; k6 = k[6]; k7 = k[7]; sp = sl; dp = dl; p02 = buff0[0]; p12 = buff1[0]; p03 = buff0[1]; p13 = buff1[1]; p04 = buff0[2]; #ifdef __SUNPRO_C #pragma pipeloop(0) #endif /* __SUNPRO_C */ for (i = 0; i <= (wid - 2); i += 2) { p00 = p02; p10 = p12; p01 = p03; p11 = p13; p02 = p04; p12 = buff1[i + 2]; p03 = buff0[i + 3]; p13 = buff1[i + 3]; p04 = buff0[i + 4]; p14 = buff1[i + 4]; LOAD_BUFF(buffi); dd.d64 = *(FTYPE *)(buffi + i); buff4[i ] = (FTYPE)dd.i32s.i0; buff4[i + 1] = (FTYPE)dd.i32s.i1; buffd[i ] = (p00 * k0 + p01 * k1 + p02 * k2 + p03 * k3 + p10 * k4 + p11 * k5 + p12 * k6 + p13 * k7); buffd[i + 1] = (p01 * k0 + p02 * k1 + p03 * k2 + p04 * k3 + p11 * k4 + p12 * k5 + p13 * k6 + p14 * k7); sp += chan2; dp += chan2; } /* * Second loop on two last lines of kernel */ k0 = k[ 8]; k1 = k[ 9]; k2 = k[10]; k3 = k[11]; k4 = k[12]; k5 = k[13]; k6 = k[14]; k7 = k[15]; sp = sl; dp = dl; p02 = buff2[0]; p12 = buff3[0]; p03 = buff2[1]; p13 = buff3[1]; p04 = buff2[2]; #ifdef __SUNPRO_C #pragma pipeloop(0) #endif /* __SUNPRO_C */ for (i = 0; i <= (wid - 2); i += 2) { p00 = p02; p10 = p12; p01 = p03; p11 = p13; p02 = p04; p12 = buff3[i + 2]; p03 = buff2[i + 3]; p13 = buff3[i + 3]; p04 = buff2[i + 4]; p14 = buff3[i + 4]; d0 = D2I(p00 * k0 + p01 * k1 + p02 * k2 + p03 * k3 + p10 * k4 + p11 * k5 + p12 * k6 + p13 * k7 + buffd[i]); d1 = D2I(p01 * k0 + p02 * k1 + p03 * k2 + p04 * k3 + p11 * k4 + p12 * k5 + p13 * k6 + p14 * k7 + buffd[i + 1]); dp[0 ] = FROM_S32(d0); dp[chan1] = FROM_S32(d1); sp += chan2; dp += chan2; } /* last pixels */ for (; i < wid; i++) { p00 = buff0[i]; p10 = buff1[i]; p20 = buff2[i]; p30 = buff3[i]; p01 = buff0[i + 1]; p11 = buff1[i + 1]; p21 = buff2[i + 1]; p31 = buff3[i + 1]; p02 = buff0[i + 2]; p12 = buff1[i + 2]; p22 = buff2[i + 2]; p32 = buff3[i + 2]; p03 = buff0[i + 3]; p13 = buff1[i + 3]; p23 = buff2[i + 3]; p33 = buff3[i + 3]; buff4[i] = (FTYPE)sp[0]; buffo[i] = D2I(p00 * k[0] + p01 * k[1] + p02 * k[2] + p03 * k[3] + p10 * k[4] + p11 * k[5] + p12 * k[6] + p13 * k[7] + p20 * k[ 8] + p21 * k[ 9] + p22 * k[10] + p23 * k[11] + p30 * k[12] + p31 * k[13] + p32 * k[14] + p33 * k[15]); dp[0] = FROM_S32(buffo[i]); sp += chan1; dp += chan1; } buff4[wid ] = (FTYPE)sp[0]; buff4[wid + 1] = (FTYPE)sp[chan1]; buff4[wid + 2] = (FTYPE)sp[chan2]; /* next line */ sl += sll; dl += dll; buffT = buff0; buff0 = buff1; buff1 = buff2; buff2 = buff3; buff3 = buff4; buff4 = buffT; } } if (pbuff != buff) mlib_free(pbuff); return MLIB_SUCCESS; } /***************************************************************/ #undef KSIZE #define KSIZE 5 mlib_status CONV_FUNC(5x5)(mlib_image *dst, const mlib_image *src, const mlib_s32 *kern, mlib_s32 scalef_expon, mlib_s32 cmask) { FTYPE buff[(KSIZE + 3)*BUFF_LINE]; FTYPE *buff0, *buff1, *buff2, *buff3, *buff4, *buff5, *buffd, *buffT; FTYPE k[KSIZE*KSIZE]; mlib_s32 d0, d1; FTYPE k0, k1, k2, k3, k4, k5, k6, k7, k8, k9; FTYPE p00, p01, p02, p03, p04, p05, p10, p11, p12, p13, p14, p15, p20, p21, p22, p23, p24, p30, p31, p32, p33, p34, p40, p41, p42, p43, p44; DEF_VARS(DTYPE); DTYPE *sl1; mlib_s32 chan2; mlib_s32 *buffo, *buffi; DTYPE *sl2, *sl3, *sl4; LOAD_KERNEL(KSIZE*KSIZE); GET_SRC_DST_PARAMETERS(DTYPE); if (wid > BUFF_LINE) { pbuff = mlib_malloc((KSIZE + 3)*sizeof(FTYPE)*wid); if (pbuff == NULL) return MLIB_FAILURE; } buff0 = pbuff; buff1 = buff0 + wid; buff2 = buff1 + wid; buff3 = buff2 + wid; buff4 = buff3 + wid; buff5 = buff4 + wid; buffd = buff5 + wid; buffo = (mlib_s32*)(buffd + wid); buffi = buffo + (wid &~ 1); chan1 = nchannel; chan2 = chan1 + chan1; wid -= (KSIZE - 1); hgt -= (KSIZE - 1); adr_dst += ((KSIZE - 1)/2)*(dll + chan1); for (c = 0; c < nchannel; c++) { if (!(cmask & (1 << (nchannel - 1 - c)))) continue; sl = adr_src + c; dl = adr_dst + c; sl1 = sl + sll; sl2 = sl1 + sll; sl3 = sl2 + sll; sl4 = sl3 + sll; #ifdef __SUNPRO_C #pragma pipeloop(0) #endif /* __SUNPRO_C */ for (i = 0; i < wid + (KSIZE - 1); i++) { buff0[i] = (FTYPE)sl[i*chan1]; buff1[i] = (FTYPE)sl1[i*chan1]; buff2[i] = (FTYPE)sl2[i*chan1]; buff3[i] = (FTYPE)sl3[i*chan1]; buff4[i] = (FTYPE)sl4[i*chan1]; } sl += KSIZE*sll; for (j = 0; j < hgt; j++) { d64_2x32 dd; /* * First loop */ k0 = k[0]; k1 = k[1]; k2 = k[2]; k3 = k[3]; k4 = k[4]; k5 = k[5]; k6 = k[6]; k7 = k[7]; k8 = k[8]; k9 = k[9]; sp = sl; dp = dl; p02 = buff0[0]; p12 = buff1[0]; p03 = buff0[1]; p13 = buff1[1]; p04 = buff0[2]; p14 = buff1[2]; #ifdef __SUNPRO_C #pragma pipeloop(0) #endif /* __SUNPRO_C */ for (i = 0; i <= (wid - 2); i += 2) { p00 = p02; p10 = p12; p01 = p03; p11 = p13; p02 = p04; p12 = p14; LOAD_BUFF(buffi); p03 = buff0[i + 3]; p13 = buff1[i + 3]; p04 = buff0[i + 4]; p14 = buff1[i + 4]; p05 = buff0[i + 5]; p15 = buff1[i + 5]; buffd[i ] = (p00 * k0 + p01 * k1 + p02 * k2 + p03 * k3 + p04 * k4 + p10 * k5 + p11 * k6 + p12 * k7 + p13 * k8 + p14 * k9); buffd[i + 1] = (p01 * k0 + p02 * k1 + p03 * k2 + p04 * k3 + p05 * k4 + p11 * k5 + p12 * k6 + p13 * k7 + p14 * k8 + p15 * k9); sp += chan2; dp += chan2; } /* * Second loop */ k0 = k[10]; k1 = k[11]; k2 = k[12]; k3 = k[13]; k4 = k[14]; k5 = k[15]; k6 = k[16]; k7 = k[17]; k8 = k[18]; k9 = k[19]; sp = sl; dp = dl; p02 = buff2[0]; p12 = buff3[0]; p03 = buff2[1]; p13 = buff3[1]; p04 = buff2[2]; p14 = buff3[2]; #ifdef __SUNPRO_C #pragma pipeloop(0) #endif /* __SUNPRO_C */ for (i = 0; i <= (wid - 2); i += 2) { p00 = p02; p10 = p12; p01 = p03; p11 = p13; p02 = buff2[i + 2]; p12 = buff3[i + 2]; p03 = buff2[i + 3]; p13 = buff3[i + 3]; p04 = buff2[i + 4]; p14 = buff3[i + 4]; p05 = buff2[i + 5]; p15 = buff3[i + 5]; dd.d64 = *(FTYPE *)(buffi + i); buff5[i ] = (FTYPE)dd.i32s.i0; buff5[i + 1] = (FTYPE)dd.i32s.i1; buffd[i ] += (p00 * k0 + p01 * k1 + p02 * k2 + p03 * k3 + p04 * k4 + p10 * k5 + p11 * k6 + p12 * k7 + p13 * k8 + p14 * k9); buffd[i + 1] += (p01 * k0 + p02 * k1 + p03 * k2 + p04 * k3 + p05 * k4 + p11 * k5 + p12 * k6 + p13 * k7 + p14 * k8 + p15 * k9); sp += chan2; dp += chan2; } /* * 3 loop */ k0 = k[20]; k1 = k[21]; k2 = k[22]; k3 = k[23]; k4 = k[24]; sp = sl; dp = dl; p02 = buff4[0]; p03 = buff4[1]; p04 = buff4[2]; p05 = buff4[3]; #ifdef __SUNPRO_C #pragma pipeloop(0) #endif /* __SUNPRO_C */ for (i = 0; i <= (wid - 2); i += 2) { p00 = p02; p01 = p03; p02 = p04; p03 = p05; p04 = buff4[i + 4]; p05 = buff4[i + 5]; d0 = D2I(p00 * k0 + p01 * k1 + p02 * k2 + p03 * k3 + p04 * k4 + buffd[i]); d1 = D2I(p01 * k0 + p02 * k1 + p03 * k2 + p04 * k3 + p05 * k4 + buffd[i + 1]); dp[0 ] = FROM_S32(d0); dp[chan1] = FROM_S32(d1); sp += chan2; dp += chan2; } /* last pixels */ for (; i < wid; i++) { p00 = buff0[i]; p10 = buff1[i]; p20 = buff2[i]; p30 = buff3[i]; p01 = buff0[i + 1]; p11 = buff1[i + 1]; p21 = buff2[i + 1]; p31 = buff3[i + 1]; p02 = buff0[i + 2]; p12 = buff1[i + 2]; p22 = buff2[i + 2]; p32 = buff3[i + 2]; p03 = buff0[i + 3]; p13 = buff1[i + 3]; p23 = buff2[i + 3]; p33 = buff3[i + 3]; p04 = buff0[i + 4]; p14 = buff1[i + 4]; p24 = buff2[i + 4]; p34 = buff3[i + 4]; p40 = buff4[i]; p41 = buff4[i + 1]; p42 = buff4[i + 2]; p43 = buff4[i + 3]; p44 = buff4[i + 4]; buff5[i] = (FTYPE)sp[0]; buffo[i] = D2I(p00 * k[0] + p01 * k[1] + p02 * k[2] + p03 * k[3] + p04 * k[4] + p10 * k[5] + p11 * k[6] + p12 * k[7] + p13 * k[8] + p14 * k[9] + p20 * k[10] + p21 * k[11] + p22 * k[12] + p23 * k[13] + p24 * k[14] + p30 * k[15] + p31 * k[16] + p32 * k[17] + p33 * k[18] + p34 * k[19] + p40 * k[20] + p41 * k[21] + p42 * k[22] + p43 * k[23] + p44 * k[24]); dp[0] = FROM_S32(buffo[i]); sp += chan1; dp += chan1; } buff5[wid ] = (FTYPE)sp[0]; buff5[wid + 1] = (FTYPE)sp[chan1]; buff5[wid + 2] = (FTYPE)sp[chan2]; buff5[wid + 3] = (FTYPE)sp[chan2 + chan1]; /* next line */ sl += sll; dl += dll; buffT = buff0; buff0 = buff1; buff1 = buff2; buff2 = buff3; buff3 = buff4; buff4 = buff5; buff5 = buffT; } } if (pbuff != buff) mlib_free(pbuff); return MLIB_SUCCESS; } /***************************************************************/ #ifndef __sparc /* for x86, using integer multiplies is faster */ mlib_status CONV_FUNC_I(5x5)(mlib_image *dst, const mlib_image *src, const mlib_s32 *kern, mlib_s32 scalef_expon, mlib_s32 cmask) { mlib_s32 buff[BUFF_LINE]; mlib_s32 *buffd; mlib_s32 k[KSIZE*KSIZE]; mlib_s32 shift1, shift2; mlib_s32 k0, k1, k2, k3, k4, k5, k6, k7, k8, k9; mlib_s32 p00, p01, p02, p03, p04, p05, p10, p11, p12, p13, p14, p15; DTYPE *adr_src, *sl, *sp0, *sp1; DTYPE *adr_dst, *dl, *dp; mlib_s32 *pbuff = buff; mlib_s32 wid, hgt, sll, dll; mlib_s32 nchannel, chan1, chan2, chan3, chan4; mlib_s32 i, j, c; #if IMG_TYPE != 1 shift1 = 16; #else shift1 = 8; #endif /* IMG_TYPE != 1 */ shift2 = scalef_expon - shift1; for (j = 0; j < KSIZE*KSIZE; j++) k[j] = kern[j] >> shift1; GET_SRC_DST_PARAMETERS(DTYPE); if (wid > BUFF_LINE) { pbuff = mlib_malloc(sizeof(mlib_s32)*wid); if (pbuff == NULL) return MLIB_FAILURE; } buffd = pbuff; chan1 = nchannel; chan2 = chan1 + chan1; chan3 = chan2 + chan1; chan4 = chan3 + chan1; wid -= (KSIZE - 1); hgt -= (KSIZE - 1); adr_dst += ((KSIZE - 1)/2)*(dll + chan1); for (c = 0; c < chan1; c++) { if (!(cmask & (1 << (chan1 - 1 - c)))) continue; sl = adr_src + c; dl = adr_dst + c; for (j = 0; j < hgt; j++) { mlib_s32 pix0, pix1; /* * First loop */ sp0 = sl; sp1 = sp0 + sll; dp = dl; k0 = k[0]; k1 = k[1]; k2 = k[2]; k3 = k[3]; k4 = k[4]; k5 = k[5]; k6 = k[6]; k7 = k[7]; k8 = k[8]; k9 = k[9]; p02 = sp0[0]; p12 = sp1[0]; p03 = sp0[chan1]; p13 = sp1[chan1]; p04 = sp0[chan2]; p14 = sp1[chan2]; p05 = sp0[chan3]; p15 = sp1[chan3]; sp0 += chan4; sp1 += chan4; #ifdef __SUNPRO_C #pragma pipeloop(0) #endif /* __SUNPRO_C */ for (i = 0; i <= (wid - 2); i += 2) { p00 = p02; p10 = p12; p01 = p03; p11 = p13; p02 = p04; p12 = p14; p03 = p05; p13 = p15; p04 = sp0[0]; p14 = sp1[0]; p05 = sp0[chan1]; p15 = sp1[chan1]; buffd[i ] = (p00 * k0 + p01 * k1 + p02 * k2 + p03 * k3 + p04 * k4 + p10 * k5 + p11 * k6 + p12 * k7 + p13 * k8 + p14 * k9); buffd[i + 1] = (p01 * k0 + p02 * k1 + p03 * k2 + p04 * k3 + p05 * k4 + p11 * k5 + p12 * k6 + p13 * k7 + p14 * k8 + p15 * k9); sp0 += chan2; sp1 += chan2; dp += chan2; } if (wid & 1) { p00 = p02; p10 = p12; p01 = p03; p11 = p13; p02 = p04; p12 = p14; p03 = p05; p13 = p15; p04 = sp0[0]; p14 = sp1[0]; buffd[i] = (p00 * k0 + p01 * k1 + p02 * k2 + p03 * k3 + p04 * k4 + p10 * k5 + p11 * k6 + p12 * k7 + p13 * k8 + p14 * k9); } /* * Second loop */ sp0 = sl + 2*sll; sp1 = sp0 + sll; dp = dl; k0 = k[10]; k1 = k[11]; k2 = k[12]; k3 = k[13]; k4 = k[14]; k5 = k[15]; k6 = k[16]; k7 = k[17]; k8 = k[18]; k9 = k[19]; p02 = sp0[0]; p12 = sp1[0]; p03 = sp0[chan1]; p13 = sp1[chan1]; p04 = sp0[chan2]; p14 = sp1[chan2]; p05 = sp0[chan3]; p15 = sp1[chan3]; sp0 += chan4; sp1 += chan4; #ifdef __SUNPRO_C #pragma pipeloop(0) #endif /* __SUNPRO_C */ for (i = 0; i <= (wid - 2); i += 2) { p00 = p02; p10 = p12; p01 = p03; p11 = p13; p02 = p04; p12 = p14; p03 = p05; p13 = p15; p04 = sp0[0]; p14 = sp1[0]; p05 = sp0[chan1]; p15 = sp1[chan1]; buffd[i ] += (p00 * k0 + p01 * k1 + p02 * k2 + p03 * k3 + p04 * k4 + p10 * k5 + p11 * k6 + p12 * k7 + p13 * k8 + p14 * k9); buffd[i + 1] += (p01 * k0 + p02 * k1 + p03 * k2 + p04 * k3 + p05 * k4 + p11 * k5 + p12 * k6 + p13 * k7 + p14 * k8 + p15 * k9); sp0 += chan2; sp1 += chan2; dp += chan2; } if (wid & 1) { p00 = p02; p10 = p12; p01 = p03; p11 = p13; p02 = p04; p12 = p14; p03 = p05; p13 = p15; p04 = sp0[0]; p14 = sp1[0]; buffd[i] += (p00 * k0 + p01 * k1 + p02 * k2 + p03 * k3 + p04 * k4 + p10 * k5 + p11 * k6 + p12 * k7 + p13 * k8 + p14 * k9); } /* * 3 loop */ dp = dl; sp0 = sl + 4*sll; k0 = k[20]; k1 = k[21]; k2 = k[22]; k3 = k[23]; k4 = k[24]; p02 = sp0[0]; p03 = sp0[chan1]; p04 = sp0[chan2]; p05 = sp0[chan3]; sp0 += chan2 + chan2; #ifdef __SUNPRO_C #pragma pipeloop(0) #endif /* __SUNPRO_C */ for (i = 0; i <= (wid - 2); i += 2) { p00 = p02; p01 = p03; p02 = p04; p03 = p05; p04 = sp0[0]; p05 = sp0[chan1]; pix0 = (buffd[i ] + p00 * k0 + p01 * k1 + p02 * k2 + p03 * k3 + p04 * k4) >> shift2; pix1 = (buffd[i + 1] + p01 * k0 + p02 * k1 + p03 * k2 + p04 * k3 + p05 * k4) >> shift2; CLAMP_STORE(dp[0], pix0); CLAMP_STORE(dp[chan1], pix1); dp += chan2; sp0 += chan2; } if (wid & 1) { p00 = p02; p01 = p03; p02 = p04; p03 = p05; p04 = sp0[0]; pix0 = (buffd[i ] + p00 * k0 + p01 * k1 + p02 * k2 + p03 * k3 + p04 * k4) >> shift2; CLAMP_STORE(dp[0], pix0); } /* next line */ sl += sll; dl += dll; } } if (pbuff != buff) mlib_free(pbuff); return MLIB_SUCCESS; } #endif /* __sparc ( for x86, using integer multiplies is faster ) */ /***************************************************************/ #if IMG_TYPE == 1 #undef KSIZE #define KSIZE 7 mlib_status CONV_FUNC(7x7)(mlib_image *dst, const mlib_image *src, const mlib_s32 *kern, mlib_s32 scalef_expon, mlib_s32 cmask) { FTYPE buff[(KSIZE + 3)*BUFF_LINE], *buffs[2*(KSIZE + 1)], *buffd; FTYPE k[KSIZE*KSIZE]; mlib_s32 l, m, buff_ind; mlib_s32 d0, d1; FTYPE k0, k1, k2, k3, k4, k5, k6; FTYPE p0, p1, p2, p3, p4, p5, p6, p7; DTYPE *sl2, *sl3, *sl4, *sl5, *sl6; DEF_VARS(DTYPE); DTYPE *sl1; mlib_s32 chan2; mlib_s32 *buffo, *buffi; LOAD_KERNEL(KSIZE*KSIZE); GET_SRC_DST_PARAMETERS(DTYPE); if (wid > BUFF_LINE) { pbuff = mlib_malloc((KSIZE + 3)*sizeof(FTYPE)*wid); if (pbuff == NULL) return MLIB_FAILURE; } for (l = 0; l < KSIZE + 1; l++) buffs[l] = pbuff + l*wid; for (l = 0; l < KSIZE + 1; l++) buffs[l + (KSIZE + 1)] = buffs[l]; buffd = buffs[KSIZE] + wid; buffo = (mlib_s32*)(buffd + wid); buffi = buffo + (wid &~ 1); chan1 = nchannel; chan2 = chan1 + chan1; wid -= (KSIZE - 1); hgt -= (KSIZE - 1); adr_dst += ((KSIZE - 1)/2)*(dll + chan1); for (c = 0; c < nchannel; c++) { if (!(cmask & (1 << (nchannel - 1 - c)))) continue; sl = adr_src + c; dl = adr_dst + c; sl1 = sl + sll; sl2 = sl1 + sll; sl3 = sl2 + sll; sl4 = sl3 + sll; sl5 = sl4 + sll; sl6 = sl5 + sll; #ifdef __SUNPRO_C #pragma pipeloop(0) #endif /* __SUNPRO_C */ for (i = 0; i < wid + (KSIZE - 1); i++) { buffs[0][i] = (FTYPE)sl[i*chan1]; buffs[1][i] = (FTYPE)sl1[i*chan1]; buffs[2][i] = (FTYPE)sl2[i*chan1]; buffs[3][i] = (FTYPE)sl3[i*chan1]; buffs[4][i] = (FTYPE)sl4[i*chan1]; buffs[5][i] = (FTYPE)sl5[i*chan1]; buffs[6][i] = (FTYPE)sl6[i*chan1]; } buff_ind = 0; #ifdef __SUNPRO_C #pragma pipeloop(0) #endif /* __SUNPRO_C */ for (i = 0; i < wid; i++) buffd[i] = 0.0; sl += KSIZE*sll; for (j = 0; j < hgt; j++) { FTYPE **buffc = buffs + buff_ind; FTYPE *buffn = buffc[KSIZE]; FTYPE *pk = k; for (l = 0; l < KSIZE; l++) { FTYPE *buff = buffc[l]; d64_2x32 dd; sp = sl; dp = dl; p2 = buff[0]; p3 = buff[1]; p4 = buff[2]; p5 = buff[3]; p6 = buff[4]; p7 = buff[5]; k0 = *pk++; k1 = *pk++; k2 = *pk++; k3 = *pk++; k4 = *pk++; k5 = *pk++; k6 = *pk++; if (l < (KSIZE - 1)) { #ifdef __SUNPRO_C #pragma pipeloop(0) #endif /* __SUNPRO_C */ for (i = 0; i <= (wid - 2); i += 2) { p0 = p2; p1 = p3; p2 = p4; p3 = p5; p4 = p6; p5 = p7; p6 = buff[i + 6]; p7 = buff[i + 7]; buffd[i ] += p0*k0 + p1*k1 + p2*k2 + p3*k3 + p4*k4 + p5*k5 + p6*k6; buffd[i + 1] += p1*k0 + p2*k1 + p3*k2 + p4*k3 + p5*k4 + p6*k5 + p7*k6; } } else { #ifdef __SUNPRO_C #pragma pipeloop(0) #endif /* __SUNPRO_C */ for (i = 0; i <= (wid - 2); i += 2) { p0 = p2; p1 = p3; p2 = p4; p3 = p5; p4 = p6; p5 = p7; p6 = buff[i + 6]; p7 = buff[i + 7]; LOAD_BUFF(buffi); dd.d64 = *(FTYPE *)(buffi + i); buffn[i ] = (FTYPE)dd.i32s.i0; buffn[i + 1] = (FTYPE)dd.i32s.i1; d0 = D2I(p0*k0 + p1*k1 + p2*k2 + p3*k3 + p4*k4 + p5*k5 + p6*k6 + buffd[i ]); d1 = D2I(p1*k0 + p2*k1 + p3*k2 + p4*k3 + p5*k4 + p6*k5 + p7*k6 + buffd[i + 1]); dp[0 ] = FROM_S32(d0); dp[chan1] = FROM_S32(d1); buffd[i ] = 0.0; buffd[i + 1] = 0.0; sp += chan2; dp += chan2; } } } /* last pixels */ for (; i < wid; i++) { FTYPE *pk = k, s = 0; mlib_s32 d0; for (l = 0; l < KSIZE; l++) { FTYPE *buff = buffc[l] + i; for (m = 0; m < KSIZE; m++) s += buff[m] * (*pk++); } d0 = D2I(s); dp[0] = FROM_S32(d0); buffn[i] = (FTYPE)sp[0]; sp += chan1; dp += chan1; } for (l = 0; l < (KSIZE - 1); l++) buffn[wid + l] = sp[l*chan1]; /* next line */ sl += sll; dl += dll; buff_ind++; if (buff_ind >= KSIZE + 1) buff_ind = 0; } } if (pbuff != buff) mlib_free(pbuff); return MLIB_SUCCESS; } #endif /* IMG_TYPE == 1 */ /***************************************************************/ #define MAX_KER 7 #define MAX_N 15 static mlib_status mlib_ImageConv1xN(mlib_image *dst, const mlib_image *src, const mlib_d64 *k, mlib_s32 n, mlib_s32 dn, mlib_s32 cmask) { FTYPE buff[BUFF_SIZE]; mlib_s32 off, kh; mlib_s32 d0, d1; const FTYPE *pk; FTYPE k0, k1, k2, k3; FTYPE p0, p1, p2, p3, p4; DEF_VARS(DTYPE); DTYPE *sl_c, *dl_c, *sl0; mlib_s32 l, hsize, max_hsize; GET_SRC_DST_PARAMETERS(DTYPE); hgt -= (n - 1); adr_dst += dn*dll; max_hsize = (CACHE_SIZE/sizeof(DTYPE))/sll; if (!max_hsize) max_hsize = 1; if (max_hsize > BUFF_SIZE) { pbuff = mlib_malloc(sizeof(FTYPE)*max_hsize); } chan1 = nchannel; sl_c = adr_src; dl_c = adr_dst; for (l = 0; l < hgt; l += hsize) { hsize = hgt - l; if (hsize > max_hsize) hsize = max_hsize; for (c = 0; c < nchannel; c++) { if (!(cmask & (1 << (chan1 - 1 - c)))) continue; sl = sl_c + c; dl = dl_c + c; #ifdef __SUNPRO_C #pragma pipeloop(0) #endif /* __SUNPRO_C */ for (j = 0; j < hsize; j++) pbuff[j] = 0.0; for (i = 0; i < wid; i++) { sl0 = sl; for (off = 0; off < (n - 4); off += 4) { pk = k + off; sp = sl0; k0 = pk[0]; k1 = pk[1]; k2 = pk[2]; k3 = pk[3]; p2 = sp[0]; p3 = sp[sll]; p4 = sp[2*sll]; sp += 3*sll; #ifdef __SUNPRO_C #pragma pipeloop(0) #endif /* __SUNPRO_C */ for (j = 0; j < hsize; j += 2) { p0 = p2; p1 = p3; p2 = p4; p3 = sp[0]; p4 = sp[sll]; pbuff[j ] += p0*k0 + p1*k1 + p2*k2 + p3*k3; pbuff[j + 1] += p1*k0 + p2*k1 + p3*k2 + p4*k3; sp += 2*sll; } sl0 += 4*sll; } pk = k + off; sp = sl0; k0 = pk[0]; k1 = pk[1]; k2 = pk[2]; k3 = pk[3]; p2 = sp[0]; p3 = sp[sll]; p4 = sp[2*sll]; dp = dl; kh = n - off; if (kh == 4) { sp += 3*sll; #ifdef __SUNPRO_C #pragma pipeloop(0) #endif /* __SUNPRO_C */ for (j = 0; j <= (hsize - 2); j += 2) { p0 = p2; p1 = p3; p2 = p4; p3 = sp[0]; p4 = sp[sll]; d0 = D2I(p0*k0 + p1*k1 + p2*k2 + p3*k3 + pbuff[j]); d1 = D2I(p1*k0 + p2*k1 + p3*k2 + p4*k3 + pbuff[j + 1]); dp[0 ] = FROM_S32(d0); dp[dll] = FROM_S32(d1); pbuff[j] = 0; pbuff[j + 1] = 0; sp += 2*sll; dp += 2*dll; } if (j < hsize) { p0 = p2; p1 = p3; p2 = p4; p3 = sp[0]; d0 = D2I(p0*k0 + p1*k1 + p2*k2 + p3*k3 + pbuff[j]); pbuff[j] = 0; dp[0] = FROM_S32(d0); } } else if (kh == 3) { sp += 2*sll; #ifdef __SUNPRO_C #pragma pipeloop(0) #endif /* __SUNPRO_C */ for (j = 0; j <= (hsize - 2); j += 2) { p0 = p2; p1 = p3; p2 = sp[0]; p3 = sp[sll]; d0 = D2I(p0*k0 + p1*k1 + p2*k2 + pbuff[j]); d1 = D2I(p1*k0 + p2*k1 + p3*k2 + pbuff[j + 1]); dp[0 ] = FROM_S32(d0); dp[dll] = FROM_S32(d1); pbuff[j] = 0; pbuff[j + 1] = 0; sp += 2*sll; dp += 2*dll; } if (j < hsize) { p0 = p2; p1 = p3; p2 = sp[0]; d0 = D2I(p0*k0 + p1*k1 + p2*k2 + pbuff[j]); pbuff[j] = 0; dp[0] = FROM_S32(d0); } } else if (kh == 2) { sp += sll; #ifdef __SUNPRO_C #pragma pipeloop(0) #endif /* __SUNPRO_C */ for (j = 0; j <= (hsize - 2); j += 2) { p0 = p2; p1 = sp[0]; p2 = sp[sll]; d0 = D2I(p0*k0 + p1*k1 + pbuff[j]); d1 = D2I(p1*k0 + p2*k1 + pbuff[j + 1]); dp[0 ] = FROM_S32(d0); dp[dll] = FROM_S32(d1); pbuff[j] = 0; pbuff[j + 1] = 0; sp += 2*sll; dp += 2*dll; } if (j < hsize) { p0 = p2; p1 = sp[0]; d0 = D2I(p0*k0 + p1*k1 + pbuff[j]); pbuff[j] = 0; dp[0] = FROM_S32(d0); } } else /* if (kh == 1) */ { #ifdef __SUNPRO_C #pragma pipeloop(0) #endif /* __SUNPRO_C */ for (j = 0; j < hsize; j++) { p0 = sp[0]; d0 = D2I(p0*k0 + pbuff[j]); dp[0] = FROM_S32(d0); pbuff[j] = 0; sp += sll; dp += dll; } } sl += chan1; dl += chan1; } } sl_c += max_hsize*sll; dl_c += max_hsize*dll; } if (pbuff != buff) mlib_free(pbuff); return MLIB_SUCCESS; } /***************************************************************/ mlib_status CONV_FUNC(MxN)(mlib_image *dst, const mlib_image *src, const mlib_s32 *kernel, mlib_s32 m, mlib_s32 n, mlib_s32 dm, mlib_s32 dn, mlib_s32 scale, mlib_s32 cmask) { FTYPE buff[BUFF_SIZE], *buffs_arr[2*(MAX_N + 1)]; FTYPE **buffs = buffs_arr, *buffd; FTYPE akernel[256], *k = akernel, fscale = DSCALE; mlib_s32 mn, l, off, kw, bsize, buff_ind; mlib_s32 d0, d1; FTYPE k0, k1, k2, k3, k4, k5, k6; FTYPE p0, p1, p2, p3, p4, p5, p6, p7; d64_2x32 dd; DEF_VARS(DTYPE); mlib_s32 chan2; mlib_s32 *buffo, *buffi; mlib_status status = MLIB_SUCCESS; GET_SRC_DST_PARAMETERS(DTYPE); if (scale > 30) { fscale *= 1.0/(1 << 30); scale -= 30; } fscale /= (1 << scale); mn = m*n; if (mn > 256) { k = mlib_malloc(mn*sizeof(mlib_d64)); if (k == NULL) return MLIB_FAILURE; } for (i = 0; i < mn; i++) { k[i] = kernel[i]*fscale; } if (m == 1) { status = mlib_ImageConv1xN(dst, src, k, n, dn, cmask); FREE_AND_RETURN_STATUS; } bsize = (n + 3)*wid; if ((bsize > BUFF_SIZE) || (n > MAX_N)) { pbuff = mlib_malloc(sizeof(FTYPE)*bsize + sizeof(FTYPE *)*2*(n + 1)); if (pbuff == NULL) { status = MLIB_FAILURE; FREE_AND_RETURN_STATUS; } buffs = (FTYPE **)(pbuff + bsize); } for (l = 0; l < (n + 1); l++) buffs[l] = pbuff + l*wid; for (l = 0; l < (n + 1); l++) buffs[l + (n + 1)] = buffs[l]; buffd = buffs[n] + wid; buffo = (mlib_s32*)(buffd + wid); buffi = buffo + (wid &~ 1); chan1 = nchannel; chan2 = chan1 + chan1; wid -= (m - 1); hgt -= (n - 1); adr_dst += dn*dll + dm*nchannel; for (c = 0; c < nchannel; c++) { if (!(cmask & (1 << (chan1 - 1 - c)))) continue; sl = adr_src + c; dl = adr_dst + c; for (l = 0; l < n; l++) { FTYPE *buff = buffs[l]; #ifdef __SUNPRO_C #pragma pipeloop(0) #endif /* __SUNPRO_C */ for (i = 0; i < wid + (m - 1); i++) { buff[i] = (FTYPE)sl[i*chan1]; } sl += sll; } buff_ind = 0; #ifdef __SUNPRO_C #pragma pipeloop(0) #endif /* __SUNPRO_C */ for (i = 0; i < wid; i++) buffd[i] = 0.0; for (j = 0; j < hgt; j++) { FTYPE **buffc = buffs + buff_ind; FTYPE *buffn = buffc[n]; FTYPE *pk = k; for (l = 0; l < n; l++) { FTYPE *buff_l = buffc[l]; for (off = 0; off < m;) { FTYPE *buff = buff_l + off; kw = m - off; if (kw > 2*MAX_KER) kw = MAX_KER; else if (kw > MAX_KER) kw = kw/2; off += kw; sp = sl; dp = dl; p2 = buff[0]; p3 = buff[1]; p4 = buff[2]; p5 = buff[3]; p6 = buff[4]; p7 = buff[5]; k0 = pk[0]; k1 = pk[1]; k2 = pk[2]; k3 = pk[3]; k4 = pk[4]; k5 = pk[5]; k6 = pk[6]; pk += kw; if (kw == 7) { if (l < (n - 1) || off < m) { #ifdef __SUNPRO_C #pragma pipeloop(0) #endif /* __SUNPRO_C */ for (i = 0; i <= (wid - 2); i += 2) { p0 = p2; p1 = p3; p2 = p4; p3 = p5; p4 = p6; p5 = p7; p6 = buff[i + 6]; p7 = buff[i + 7]; buffd[i ] += p0*k0 + p1*k1 + p2*k2 + p3*k3 + p4*k4 + p5*k5 + p6*k6; buffd[i + 1] += p1*k0 + p2*k1 + p3*k2 + p4*k3 + p5*k4 + p6*k5 + p7*k6; } } else { #ifdef __SUNPRO_C #pragma pipeloop(0) #endif /* __SUNPRO_C */ for (i = 0; i <= (wid - 2); i += 2) { p0 = p2; p1 = p3; p2 = p4; p3 = p5; p4 = p6; p5 = p7; p6 = buff[i + 6]; p7 = buff[i + 7]; LOAD_BUFF(buffi); dd.d64 = *(FTYPE *)(buffi + i); buffn[i ] = (FTYPE)dd.i32s.i0; buffn[i + 1] = (FTYPE)dd.i32s.i1; d0 = D2I(p0*k0 + p1*k1 + p2*k2 + p3*k3 + p4*k4 + p5*k5 + p6*k6 + buffd[i ]); d1 = D2I(p1*k0 + p2*k1 + p3*k2 + p4*k3 + p5*k4 + p6*k5 + p7*k6 + buffd[i + 1]); dp[0 ] = FROM_S32(d0); dp[chan1] = FROM_S32(d1); buffd[i ] = 0.0; buffd[i + 1] = 0.0; sp += chan2; dp += chan2; } } } else if (kw == 6) { if (l < (n - 1) || off < m) { #ifdef __SUNPRO_C #pragma pipeloop(0) #endif /* __SUNPRO_C */ for (i = 0; i <= (wid - 2); i += 2) { p0 = p2; p1 = p3; p2 = p4; p3 = p5; p4 = p6; p5 = buff[i + 5]; p6 = buff[i + 6]; buffd[i ] += p0*k0 + p1*k1 + p2*k2 + p3*k3 + p4*k4 + p5*k5; buffd[i + 1] += p1*k0 + p2*k1 + p3*k2 + p4*k3 + p5*k4 + p6*k5; } } else { #ifdef __SUNPRO_C #pragma pipeloop(0) #endif /* __SUNPRO_C */ for (i = 0; i <= (wid - 2); i += 2) { p0 = p2; p1 = p3; p2 = p4; p3 = p5; p4 = p6; p5 = buff[i + 5]; p6 = buff[i + 6]; buffn[i ] = (FTYPE)sp[0]; buffn[i + 1] = (FTYPE)sp[chan1]; d0 = D2I(p0*k0 + p1*k1 + p2*k2 + p3*k3 + p4*k4 + p5*k5 + buffd[i ]); d1 = D2I(p1*k0 + p2*k1 + p3*k2 + p4*k3 + p5*k4 + p6*k5 + buffd[i + 1]); dp[0 ] = FROM_S32(d0); dp[chan1] = FROM_S32(d1); buffd[i ] = 0.0; buffd[i + 1] = 0.0; sp += chan2; dp += chan2; } } } else if (kw == 5) { if (l < (n - 1) || off < m) { #ifdef __SUNPRO_C #pragma pipeloop(0) #endif /* __SUNPRO_C */ for (i = 0; i <= (wid - 2); i += 2) { p0 = p2; p1 = p3; p2 = p4; p3 = p5; p4 = buff[i + 4]; p5 = buff[i + 5]; buffd[i ] += p0*k0 + p1*k1 + p2*k2 + p3*k3 + p4*k4; buffd[i + 1] += p1*k0 + p2*k1 + p3*k2 + p4*k3 + p5*k4; } } else { #ifdef __SUNPRO_C #pragma pipeloop(0) #endif /* __SUNPRO_C */ for (i = 0; i <= (wid - 2); i += 2) { p0 = p2; p1 = p3; p2 = p4; p3 = p5; p4 = buff[i + 4]; p5 = buff[i + 5]; buffn[i ] = (FTYPE)sp[0]; buffn[i + 1] = (FTYPE)sp[chan1]; d0 = D2I(p0*k0 + p1*k1 + p2*k2 + p3*k3 + p4*k4 + buffd[i ]); d1 = D2I(p1*k0 + p2*k1 + p3*k2 + p4*k3 + p5*k4 + buffd[i + 1]); dp[0 ] = FROM_S32(d0); dp[chan1] = FROM_S32(d1); buffd[i ] = 0.0; buffd[i + 1] = 0.0; sp += chan2; dp += chan2; } } } else if (kw == 4) { if (l < (n - 1) || off < m) { #ifdef __SUNPRO_C #pragma pipeloop(0) #endif /* __SUNPRO_C */ for (i = 0; i <= (wid - 2); i += 2) { p0 = p2; p1 = p3; p2 = p4; p3 = buff[i + 3]; p4 = buff[i + 4]; buffd[i ] += p0*k0 + p1*k1 + p2*k2 + p3*k3; buffd[i + 1] += p1*k0 + p2*k1 + p3*k2 + p4*k3; } } else { #ifdef __SUNPRO_C #pragma pipeloop(0) #endif /* __SUNPRO_C */ for (i = 0; i <= (wid - 2); i += 2) { p0 = p2; p1 = p3; p2 = p4; p3 = buff[i + 3]; p4 = buff[i + 4]; buffn[i ] = (FTYPE)sp[0]; buffn[i + 1] = (FTYPE)sp[chan1]; d0 = D2I(p0*k0 + p1*k1 + p2*k2 + p3*k3 + buffd[i ]); d1 = D2I(p1*k0 + p2*k1 + p3*k2 + p4*k3 + buffd[i + 1]); dp[0 ] = FROM_S32(d0); dp[chan1] = FROM_S32(d1); buffd[i ] = 0.0; buffd[i + 1] = 0.0; sp += chan2; dp += chan2; } } } else if (kw == 3) { if (l < (n - 1) || off < m) { #ifdef __SUNPRO_C #pragma pipeloop(0) #endif /* __SUNPRO_C */ for (i = 0; i <= (wid - 2); i += 2) { p0 = p2; p1 = p3; p2 = buff[i + 2]; p3 = buff[i + 3]; buffd[i ] += p0*k0 + p1*k1 + p2*k2; buffd[i + 1] += p1*k0 + p2*k1 + p3*k2; } } else { #ifdef __SUNPRO_C #pragma pipeloop(0) #endif /* __SUNPRO_C */ for (i = 0; i <= (wid - 2); i += 2) { p0 = p2; p1 = p3; p2 = buff[i + 2]; p3 = buff[i + 3]; buffn[i ] = (FTYPE)sp[0]; buffn[i + 1] = (FTYPE)sp[chan1]; d0 = D2I(p0*k0 + p1*k1 + p2*k2 + buffd[i ]); d1 = D2I(p1*k0 + p2*k1 + p3*k2 + buffd[i + 1]); dp[0 ] = FROM_S32(d0); dp[chan1] = FROM_S32(d1); buffd[i ] = 0.0; buffd[i + 1] = 0.0; sp += chan2; dp += chan2; } } } else /*if (kw == 2)*/ { if (l < (n - 1) || off < m) { #ifdef __SUNPRO_C #pragma pipeloop(0) #endif /* __SUNPRO_C */ for (i = 0; i <= (wid - 2); i += 2) { p0 = p2; p1 = buff[i + 1]; p2 = buff[i + 2]; buffd[i ] += p0*k0 + p1*k1; buffd[i + 1] += p1*k0 + p2*k1; } } else { #ifdef __SUNPRO_C #pragma pipeloop(0) #endif /* __SUNPRO_C */ for (i = 0; i <= (wid - 2); i += 2) { p0 = p2; p1 = buff[i + 1]; p2 = buff[i + 2]; buffn[i ] = (FTYPE)sp[0]; buffn[i + 1] = (FTYPE)sp[chan1]; d0 = D2I(p0*k0 + p1*k1 + buffd[i ]); d1 = D2I(p1*k0 + p2*k1 + buffd[i + 1]); dp[0 ] = FROM_S32(d0); dp[chan1] = FROM_S32(d1); buffd[i ] = 0.0; buffd[i + 1] = 0.0; sp += chan2; dp += chan2; } } } } } /* last pixels */ for (; i < wid; i++) { FTYPE *pk = k, s = 0; mlib_s32 x, d0; for (l = 0; l < n; l++) { FTYPE *buff = buffc[l] + i; for (x = 0; x < m; x++) s += buff[x] * (*pk++); } d0 = D2I(s); dp[0] = FROM_S32(d0); buffn[i] = (FTYPE)sp[0]; sp += chan1; dp += chan1; } for (l = 0; l < (m - 1); l++) buffn[wid + l] = sp[l*chan1]; /* next line */ sl += sll; dl += dll; buff_ind++; if (buff_ind >= n + 1) buff_ind = 0; } } FREE_AND_RETURN_STATUS; } /***************************************************************/ #ifndef __sparc /* for x86, using integer multiplies is faster */ #define STORE_RES(res, x) \ x >>= shift2; \ CLAMP_STORE(res, x) mlib_status CONV_FUNC_I(MxN)(mlib_image *dst, const mlib_image *src, const mlib_s32 *kernel, mlib_s32 m, mlib_s32 n, mlib_s32 dm, mlib_s32 dn, mlib_s32 scale, mlib_s32 cmask) { mlib_s32 buff[BUFF_SIZE], *buffd = buff; mlib_s32 l, off, kw; mlib_s32 d0, d1, shift1, shift2; mlib_s32 k0, k1, k2, k3, k4, k5, k6; mlib_s32 p0, p1, p2, p3, p4, p5, p6, p7; DTYPE *adr_src, *sl, *sp = NULL; DTYPE *adr_dst, *dl, *dp = NULL; mlib_s32 wid, hgt, sll, dll; mlib_s32 nchannel, chan1; mlib_s32 i, j, c; mlib_s32 chan2; mlib_s32 k_locl[MAX_N*MAX_N], *k = k_locl; GET_SRC_DST_PARAMETERS(DTYPE); #if IMG_TYPE != 1 shift1 = 16; #else shift1 = 8; #endif /* IMG_TYPE != 1 */ shift2 = scale - shift1; chan1 = nchannel; chan2 = chan1 + chan1; wid -= (m - 1); hgt -= (n - 1); adr_dst += dn*dll + dm*nchannel; if (wid > BUFF_SIZE) { buffd = mlib_malloc(sizeof(mlib_s32)*wid); if (buffd == NULL) return MLIB_FAILURE; } if (m*n > MAX_N*MAX_N) { k = mlib_malloc(sizeof(mlib_s32)*(m*n)); if (k == NULL) { if (buffd != buff) mlib_free(buffd); return MLIB_FAILURE; } } for (i = 0; i < m*n; i++) { k[i] = kernel[i] >> shift1; } for (c = 0; c < nchannel; c++) { if (!(cmask & (1 << (nchannel - 1 - c)))) continue; sl = adr_src + c; dl = adr_dst + c; #ifdef __SUNPRO_C #pragma pipeloop(0) #endif /* __SUNPRO_C */ for (i = 0; i < wid; i++) buffd[i] = 0; for (j = 0; j < hgt; j++) { mlib_s32 *pk = k; for (l = 0; l < n; l++) { DTYPE *sp0 = sl + l*sll; for (off = 0; off < m;) { sp = sp0 + off*chan1; dp = dl; kw = m - off; if (kw > 2*MAX_KER) kw = MAX_KER; else if (kw > MAX_KER) kw = kw/2; off += kw; p2 = sp[0]; p3 = sp[chan1]; p4 = sp[chan2]; p5 = sp[chan2 + chan1]; p6 = sp[chan2 + chan2]; p7 = sp[5*chan1]; k0 = pk[0]; k1 = pk[1]; k2 = pk[2]; k3 = pk[3]; k4 = pk[4]; k5 = pk[5]; k6 = pk[6]; pk += kw; sp += (kw - 1)*chan1; if (kw == 7) { if (l < (n - 1) || off < m) { #ifdef __SUNPRO_C #pragma pipeloop(0) #endif /* __SUNPRO_C */ for (i = 0; i <= (wid - 2); i += 2) { p0 = p2; p1 = p3; p2 = p4; p3 = p5; p4 = p6; p5 = p7; p6 = sp[0]; p7 = sp[chan1]; buffd[i ] += p0*k0 + p1*k1 + p2*k2 + p3*k3 + p4*k4 + p5*k5 + p6*k6; buffd[i + 1] += p1*k0 + p2*k1 + p3*k2 + p4*k3 + p5*k4 + p6*k5 + p7*k6; sp += chan2; } } else { #ifdef __SUNPRO_C #pragma pipeloop(0) #endif /* __SUNPRO_C */ for (i = 0; i <= (wid - 2); i += 2) { p0 = p2; p1 = p3; p2 = p4; p3 = p5; p4 = p6; p5 = p7; p6 = sp[0]; p7 = sp[chan1]; d0 = (p0*k0 + p1*k1 + p2*k2 + p3*k3 + p4*k4 + p5*k5 + p6*k6 + buffd[i ]); d1 = (p1*k0 + p2*k1 + p3*k2 + p4*k3 + p5*k4 + p6*k5 + p7*k6 + buffd[i + 1]); STORE_RES(dp[0 ], d0); STORE_RES(dp[chan1], d1); buffd[i ] = 0; buffd[i + 1] = 0; sp += chan2; dp += chan2; } } } else if (kw == 6) { if (l < (n - 1) || off < m) { #ifdef __SUNPRO_C #pragma pipeloop(0) #endif /* __SUNPRO_C */ for (i = 0; i <= (wid - 2); i += 2) { p0 = p2; p1 = p3; p2 = p4; p3 = p5; p4 = p6; p5 = sp[0]; p6 = sp[chan1]; buffd[i ] += p0*k0 + p1*k1 + p2*k2 + p3*k3 + p4*k4 + p5*k5; buffd[i + 1] += p1*k0 + p2*k1 + p3*k2 + p4*k3 + p5*k4 + p6*k5; sp += chan2; } } else { #ifdef __SUNPRO_C #pragma pipeloop(0) #endif /* __SUNPRO_C */ for (i = 0; i <= (wid - 2); i += 2) { p0 = p2; p1 = p3; p2 = p4; p3 = p5; p4 = p6; p5 = sp[0]; p6 = sp[chan1]; d0 = (p0*k0 + p1*k1 + p2*k2 + p3*k3 + p4*k4 + p5*k5 + buffd[i ]); d1 = (p1*k0 + p2*k1 + p3*k2 + p4*k3 + p5*k4 + p6*k5 + buffd[i + 1]); STORE_RES(dp[0 ], d0); STORE_RES(dp[chan1], d1); buffd[i ] = 0; buffd[i + 1] = 0; sp += chan2; dp += chan2; } } } else if (kw == 5) { if (l < (n - 1) || off < m) { #ifdef __SUNPRO_C #pragma pipeloop(0) #endif /* __SUNPRO_C */ for (i = 0; i <= (wid - 2); i += 2) { p0 = p2; p1 = p3; p2 = p4; p3 = p5; p4 = sp[0]; p5 = sp[chan1]; buffd[i ] += p0*k0 + p1*k1 + p2*k2 + p3*k3 + p4*k4; buffd[i + 1] += p1*k0 + p2*k1 + p3*k2 + p4*k3 + p5*k4; sp += chan2; } } else { #ifdef __SUNPRO_C #pragma pipeloop(0) #endif /* __SUNPRO_C */ for (i = 0; i <= (wid - 2); i += 2) { p0 = p2; p1 = p3; p2 = p4; p3 = p5; p4 = sp[0]; p5 = sp[chan1]; d0 = (p0*k0 + p1*k1 + p2*k2 + p3*k3 + p4*k4 + buffd[i ]); d1 = (p1*k0 + p2*k1 + p3*k2 + p4*k3 + p5*k4 + buffd[i + 1]); STORE_RES(dp[0 ], d0); STORE_RES(dp[chan1], d1); buffd[i ] = 0; buffd[i + 1] = 0; sp += chan2; dp += chan2; } } } else if (kw == 4) { if (l < (n - 1) || off < m) { #ifdef __SUNPRO_C #pragma pipeloop(0) #endif /* __SUNPRO_C */ for (i = 0; i <= (wid - 2); i += 2) { p0 = p2; p1 = p3; p2 = p4; p3 = sp[0]; p4 = sp[chan1]; buffd[i ] += p0*k0 + p1*k1 + p2*k2 + p3*k3; buffd[i + 1] += p1*k0 + p2*k1 + p3*k2 + p4*k3; sp += chan2; } } else { #ifdef __SUNPRO_C #pragma pipeloop(0) #endif /* __SUNPRO_C */ for (i = 0; i <= (wid - 2); i += 2) { p0 = p2; p1 = p3; p2 = p4; p3 = sp[0]; p4 = sp[chan1]; d0 = (p0*k0 + p1*k1 + p2*k2 + p3*k3 + buffd[i ]); d1 = (p1*k0 + p2*k1 + p3*k2 + p4*k3 + buffd[i + 1]); STORE_RES(dp[0 ], d0); STORE_RES(dp[chan1], d1); buffd[i ] = 0; buffd[i + 1] = 0; sp += chan2; dp += chan2; } } } else if (kw == 3) { if (l < (n - 1) || off < m) { #ifdef __SUNPRO_C #pragma pipeloop(0) #endif /* __SUNPRO_C */ for (i = 0; i <= (wid - 2); i += 2) { p0 = p2; p1 = p3; p2 = sp[0]; p3 = sp[chan1]; buffd[i ] += p0*k0 + p1*k1 + p2*k2; buffd[i + 1] += p1*k0 + p2*k1 + p3*k2; sp += chan2; } } else { #ifdef __SUNPRO_C #pragma pipeloop(0) #endif /* __SUNPRO_C */ for (i = 0; i <= (wid - 2); i += 2) { p0 = p2; p1 = p3; p2 = sp[0]; p3 = sp[chan1]; d0 = (p0*k0 + p1*k1 + p2*k2 + buffd[i ]); d1 = (p1*k0 + p2*k1 + p3*k2 + buffd[i + 1]); STORE_RES(dp[0 ], d0); STORE_RES(dp[chan1], d1); buffd[i ] = 0; buffd[i + 1] = 0; sp += chan2; dp += chan2; } } } else if (kw == 2) { if (l < (n - 1) || off < m) { #ifdef __SUNPRO_C #pragma pipeloop(0) #endif /* __SUNPRO_C */ for (i = 0; i <= (wid - 2); i += 2) { p0 = p2; p1 = sp[0]; p2 = sp[chan1]; buffd[i ] += p0*k0 + p1*k1; buffd[i + 1] += p1*k0 + p2*k1; sp += chan2; } } else { #ifdef __SUNPRO_C #pragma pipeloop(0) #endif /* __SUNPRO_C */ for (i = 0; i <= (wid - 2); i += 2) { p0 = p2; p1 = sp[0]; p2 = sp[chan1]; d0 = (p0*k0 + p1*k1 + buffd[i ]); d1 = (p1*k0 + p2*k1 + buffd[i + 1]); STORE_RES(dp[0 ], d0); STORE_RES(dp[chan1], d1); buffd[i ] = 0; buffd[i + 1] = 0; sp += chan2; dp += chan2; } } } else /*if (kw == 1)*/ { if (l < (n - 1) || off < m) { #ifdef __SUNPRO_C #pragma pipeloop(0) #endif /* __SUNPRO_C */ for (i = 0; i <= (wid - 2); i += 2) { p0 = sp[0]; p1 = sp[chan1]; buffd[i ] += p0*k0; buffd[i + 1] += p1*k0; sp += chan2; } } else { #ifdef __SUNPRO_C #pragma pipeloop(0) #endif /* __SUNPRO_C */ for (i = 0; i <= (wid - 2); i += 2) { p0 = sp[0]; p1 = sp[chan1]; d0 = (p0*k0 + buffd[i ]); d1 = (p1*k0 + buffd[i + 1]); STORE_RES(dp[0 ], d0); STORE_RES(dp[chan1], d1); buffd[i ] = 0; buffd[i + 1] = 0; sp += chan2; dp += chan2; } } } } } /* last pixels */ for (; i < wid; i++) { mlib_s32 *pk = k, s = 0; mlib_s32 x; for (l = 0; l < n; l++) { sp = sl + l*sll + i*chan1; for (x = 0; x < m; x++) { s += sp[0] * pk[0]; sp += chan1; pk ++; } } STORE_RES(dp[0], s); sp += chan1; dp += chan1; } sl += sll; dl += dll; } } if (buffd != buff) mlib_free(buffd); if (k != k_locl) mlib_free(k); return MLIB_SUCCESS; } /***************************************************************/ #endif /* __sparc ( for x86, using integer multiplies is faster ) */ /***************************************************************/ Other Java examples (source code examples)Here is a short list of links related to this Java mlib_ImageConv_u16nw.c source code file: |
... this post is sponsored by my books ... | |
#1 New Release! |
FP Best Seller |
Copyright 1998-2024 Alvin Alexander, alvinalexander.com
All Rights Reserved.
A percentage of advertising revenue from
pages under the /java/jwarehouse
URI on this website is
paid back to open source projects.