alvinalexander.com | career | drupal | java | mac | mysql | perl | scala | uml | unix  

Java example source code file (cmsgamma.c)

This example Java source code file (cmsgamma.c) is included in the alvinalexander.com "Java Source Code Warehouse" project. The intent of this project is to help you "Learn Java by Example" TM.

Learn more about this Java project at its project page.

Java - Java tags/keywords

cmsexport, contextid, curve, evals, false, incurve, null, params, segments, table16, type, val

The cmsgamma.c Java example source code

/*
 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
 *
 * This code is free software; you can redistribute it and/or modify it
 * under the terms of the GNU General Public License version 2 only, as
 * published by the Free Software Foundation.  Oracle designates this
 * particular file as subject to the "Classpath" exception as provided
 * by Oracle in the LICENSE file that accompanied this code.
 *
 * This code is distributed in the hope that it will be useful, but WITHOUT
 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
 * version 2 for more details (a copy is included in the LICENSE file that
 * accompanied this code).
 *
 * You should have received a copy of the GNU General Public License version
 * 2 along with this work; if not, write to the Free Software Foundation,
 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
 *
 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
 * or visit www.oracle.com if you need additional information or have any
 * questions.
 */

// This file is available under and governed by the GNU General Public
// License version 2 only, as published by the Free Software Foundation.
// However, the following notice accompanied the original version of this
// file:
//
//---------------------------------------------------------------------------------
//
//  Little Color Management System
//  Copyright (c) 1998-2012 Marti Maria Saguer
//
// Permission is hereby granted, free of charge, to any person obtaining
// a copy of this software and associated documentation files (the "Software"),
// to deal in the Software without restriction, including without limitation
// the rights to use, copy, modify, merge, publish, distribute, sublicense,
// and/or sell copies of the Software, and to permit persons to whom the Software
// is furnished to do so, subject to the following conditions:
//
// The above copyright notice and this permission notice shall be included in
// all copies or substantial portions of the Software.
//
// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
// EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO
// THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
// NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE
// LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION
// OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION
// WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
//
//---------------------------------------------------------------------------------
//
#include "lcms2_internal.h"

// Tone curves are powerful constructs that can contain curves specified in diverse ways.
// The curve is stored in segments, where each segment can be sampled or specified by parameters.
// a 16.bit simplification of the *whole* curve is kept for optimization purposes. For float operation,
// each segment is evaluated separately. Plug-ins may be used to define new parametric schemes,
// each plug-in may define up to MAX_TYPES_IN_LCMS_PLUGIN functions types. For defining a function,
// the plug-in should provide the type id, how many parameters each type has, and a pointer to
// a procedure that evaluates the function. In the case of reverse evaluation, the evaluator will
// be called with the type id as a negative value, and a sampled version of the reversed curve
// will be built.

// ----------------------------------------------------------------- Implementation
// Maxim number of nodes
#define MAX_NODES_IN_CURVE   4097
#define MINUS_INF            (-1E22F)
#define PLUS_INF             (+1E22F)

// The list of supported parametric curves
typedef struct _cmsParametricCurvesCollection_st {

    int nFunctions;                                     // Number of supported functions in this chunk
    int FunctionTypes[MAX_TYPES_IN_LCMS_PLUGIN];        // The identification types
    int ParameterCount[MAX_TYPES_IN_LCMS_PLUGIN];       // Number of parameters for each function
    cmsParametricCurveEvaluator    Evaluator;           // The evaluator

    struct _cmsParametricCurvesCollection_st* Next; // Next in list

} _cmsParametricCurvesCollection;


// This is the default (built-in) evaluator
static cmsFloat64Number DefaultEvalParametricFn(cmsInt32Number Type, const cmsFloat64Number Params[], cmsFloat64Number R);

// The built-in list
static _cmsParametricCurvesCollection DefaultCurves = {
    9,                                  // # of curve types
    { 1, 2, 3, 4, 5, 6, 7, 8, 108 },    // Parametric curve ID
    { 1, 3, 4, 5, 7, 4, 5, 5, 1 },      // Parameters by type
    DefaultEvalParametricFn,            // Evaluator
    NULL                                // Next in chain
};

// The linked list head
static _cmsParametricCurvesCollection* ParametricCurves = &DefaultCurves;

// As a way to install new parametric curves
cmsBool _cmsRegisterParametricCurvesPlugin(cmsPluginBase* Data)
{
    cmsPluginParametricCurves* Plugin = (cmsPluginParametricCurves*) Data;
    _cmsParametricCurvesCollection* fl;

    if (Data == NULL) {

          ParametricCurves =  &DefaultCurves;
          return TRUE;
    }

    fl = (_cmsParametricCurvesCollection*) _cmsPluginMalloc(sizeof(_cmsParametricCurvesCollection));
    if (fl == NULL) return FALSE;

    // Copy the parameters
    fl ->Evaluator  = Plugin ->Evaluator;
    fl ->nFunctions = Plugin ->nFunctions;

    // Make sure no mem overwrites
    if (fl ->nFunctions > MAX_TYPES_IN_LCMS_PLUGIN)
        fl ->nFunctions = MAX_TYPES_IN_LCMS_PLUGIN;

    // Copy the data
    memmove(fl->FunctionTypes,  Plugin ->FunctionTypes,   fl->nFunctions * sizeof(cmsUInt32Number));
    memmove(fl->ParameterCount, Plugin ->ParameterCount,  fl->nFunctions * sizeof(cmsUInt32Number));

    // Keep linked list
    fl ->Next = ParametricCurves;
    ParametricCurves = fl;

    // All is ok
    return TRUE;
}


// Search in type list, return position or -1 if not found
static
int IsInSet(int Type, _cmsParametricCurvesCollection* c)
{
    int i;

    for (i=0; i < c ->nFunctions; i++)
        if (abs(Type) == c ->FunctionTypes[i]) return i;

    return -1;
}


// Search for the collection which contains a specific type
static
_cmsParametricCurvesCollection *GetParametricCurveByType(int Type, int* index)
{
    _cmsParametricCurvesCollection* c;
    int Position;

    for (c = ParametricCurves; c != NULL; c = c ->Next) {

        Position = IsInSet(Type, c);

        if (Position != -1) {
            if (index != NULL)
                *index = Position;
            return c;
        }
    }

    return NULL;
}

// Low level allocate, which takes care of memory details. nEntries may be zero, and in this case
// no optimation curve is computed. nSegments may also be zero in the inverse case, where only the
// optimization curve is given. Both features simultaneously is an error
static
cmsToneCurve* AllocateToneCurveStruct(cmsContext ContextID, cmsInt32Number nEntries,
                                      cmsInt32Number nSegments, const cmsCurveSegment* Segments,
                                      const cmsUInt16Number* Values)
{
    cmsToneCurve* p;
    int i;

    // We allow huge tables, which are then restricted for smoothing operations
    if (nEntries > 65530 || nEntries < 0) {
        cmsSignalError(ContextID, cmsERROR_RANGE, "Couldn't create tone curve of more than 65530 entries");
        return NULL;
    }

    if (nEntries <= 0 && nSegments <= 0) {
        cmsSignalError(ContextID, cmsERROR_RANGE, "Couldn't create tone curve with zero segments and no table");
        return NULL;
    }

    // Allocate all required pointers, etc.
    p = (cmsToneCurve*) _cmsMallocZero(ContextID, sizeof(cmsToneCurve));
    if (!p) return NULL;

    // In this case, there are no segments
    if (nSegments <= 0) {
        p ->Segments = NULL;
        p ->Evals = NULL;
    }
    else {
        p ->Segments = (cmsCurveSegment*) _cmsCalloc(ContextID, nSegments, sizeof(cmsCurveSegment));
        if (p ->Segments == NULL) goto Error;

        p ->Evals    = (cmsParametricCurveEvaluator*) _cmsCalloc(ContextID, nSegments, sizeof(cmsParametricCurveEvaluator));
        if (p ->Evals == NULL) goto Error;
    }

    p -> nSegments = nSegments;

    // This 16-bit table contains a limited precision representation of the whole curve and is kept for
    // increasing xput on certain operations.
    if (nEntries <= 0) {
        p ->Table16 = NULL;
    }
    else {
       p ->Table16 = (cmsUInt16Number*)  _cmsCalloc(ContextID, nEntries, sizeof(cmsUInt16Number));
       if (p ->Table16 == NULL) goto Error;
    }

    p -> nEntries  = nEntries;

    // Initialize members if requested
    if (Values != NULL && (nEntries > 0)) {

        for (i=0; i < nEntries; i++)
            p ->Table16[i] = Values[i];
    }

    // Initialize the segments stuff. The evaluator for each segment is located and a pointer to it
    // is placed in advance to maximize performance.
    if (Segments != NULL && (nSegments > 0)) {

        _cmsParametricCurvesCollection *c;

        p ->SegInterp = (cmsInterpParams**) _cmsCalloc(ContextID, nSegments, sizeof(cmsInterpParams*));
        if (p ->SegInterp == NULL) goto Error;

        for (i=0; i< nSegments; i++) {

            // Type 0 is a special marker for table-based curves
            if (Segments[i].Type == 0)
                p ->SegInterp[i] = _cmsComputeInterpParams(ContextID, Segments[i].nGridPoints, 1, 1, NULL, CMS_LERP_FLAGS_FLOAT);

            memmove(&p ->Segments[i], &Segments[i], sizeof(cmsCurveSegment));

            if (Segments[i].Type == 0 && Segments[i].SampledPoints != NULL)
                p ->Segments[i].SampledPoints = (cmsFloat32Number*) _cmsDupMem(ContextID, Segments[i].SampledPoints, sizeof(cmsFloat32Number) * Segments[i].nGridPoints);
            else
                p ->Segments[i].SampledPoints = NULL;


            c = GetParametricCurveByType(Segments[i].Type, NULL);
            if (c != NULL)
                    p ->Evals[i] = c ->Evaluator;
        }
    }

    p ->InterpParams = _cmsComputeInterpParams(ContextID, p ->nEntries, 1, 1, p->Table16, CMS_LERP_FLAGS_16BITS);
    return p;

Error:
    if (p -> Segments) _cmsFree(ContextID, p ->Segments);
    if (p -> Evals) _cmsFree(ContextID, p -> Evals);
    if (p ->Table16) _cmsFree(ContextID, p ->Table16);
    _cmsFree(ContextID, p);
    return NULL;
}


// Parametric Fn using floating point
static
cmsFloat64Number DefaultEvalParametricFn(cmsInt32Number Type, const cmsFloat64Number Params[], cmsFloat64Number R)
{
    cmsFloat64Number e, Val, disc;

    switch (Type) {

   // X = Y ^ Gamma
    case 1:
        if (R < 0) {

            if (fabs(Params[0] - 1.0) < MATRIX_DET_TOLERANCE)
                Val = R;
            else
                Val = 0;
        }
        else
            Val = pow(R, Params[0]);
        break;

    // Type 1 Reversed: X = Y ^1/gamma
    case -1:
         if (R < 0) {

            if (fabs(Params[0] - 1.0) < MATRIX_DET_TOLERANCE)
                Val = R;
            else
                Val = 0;
        }
        else
            Val = pow(R, 1/Params[0]);
        break;

    // CIE 122-1966
    // Y = (aX + b)^Gamma  | X >= -b/a
    // Y = 0               | else
    case 2:
        disc = -Params[2] / Params[1];

        if (R >= disc ) {

            e = Params[1]*R + Params[2];

            if (e > 0)
                Val = pow(e, Params[0]);
            else
                Val = 0;
        }
        else
            Val = 0;
        break;

     // Type 2 Reversed
     // X = (Y ^1/g  - b) / a
     case -2:
         if (R < 0)
             Val = 0;
         else
             Val = (pow(R, 1.0/Params[0]) - Params[2]) / Params[1];

         if (Val < 0)
              Val = 0;
         break;


    // IEC 61966-3
    // Y = (aX + b)^Gamma | X <= -b/a
    // Y = c              | else
    case 3:
        disc = -Params[2] / Params[1];
        if (disc < 0)
            disc = 0;

        if (R >= disc) {

            e = Params[1]*R + Params[2];

            if (e > 0)
                Val = pow(e, Params[0]) + Params[3];
            else
                Val = 0;
        }
        else
            Val = Params[3];
        break;


    // Type 3 reversed
    // X=((Y-c)^1/g - b)/a      | (Y>=c)
    // X=-b/a                   | (Y<c)
    case -3:
        if (R >= Params[3])  {

            e = R - Params[3];

            if (e > 0)
                Val = (pow(e, 1/Params[0]) - Params[2]) / Params[1];
            else
                Val = 0;
        }
        else {
            Val = -Params[2] / Params[1];
        }
        break;


    // IEC 61966-2.1 (sRGB)
    // Y = (aX + b)^Gamma | X >= d
    // Y = cX             | X < d
    case 4:
        if (R >= Params[4]) {

            e = Params[1]*R + Params[2];

            if (e > 0)
                Val = pow(e, Params[0]);
            else
                Val = 0;
        }
        else
            Val = R * Params[3];
        break;

    // Type 4 reversed
    // X=((Y^1/g-b)/a)    | Y >= (ad+b)^g
    // X=Y/c              | Y< (ad+b)^g
    case -4:
        e = Params[1] * Params[4] + Params[2];
        if (e < 0)
            disc = 0;
        else
            disc = pow(e, Params[0]);

        if (R >= disc) {

            Val = (pow(R, 1.0/Params[0]) - Params[2]) / Params[1];
        }
        else {
            Val = R / Params[3];
        }
        break;


    // Y = (aX + b)^Gamma + e | X >= d
    // Y = cX + f             | X < d
    case 5:
        if (R >= Params[4]) {

            e = Params[1]*R + Params[2];

            if (e > 0)
                Val = pow(e, Params[0]) + Params[5];
            else
                Val = 0;
        }
        else
            Val = R*Params[3] + Params[6];
        break;


    // Reversed type 5
    // X=((Y-e)1/g-b)/a   | Y >=(ad+b)^g+e), cd+f
    // X=(Y-f)/c          | else
    case -5:

        disc = Params[3] * Params[4] + Params[6];
        if (R >= disc) {

            e = R - Params[5];
            if (e < 0)
                Val = 0;
            else
                Val = (pow(e, 1.0/Params[0]) - Params[2]) / Params[1];
        }
        else {
            Val = (R - Params[6]) / Params[3];
        }
        break;


    // Types 6,7,8 comes from segmented curves as described in ICCSpecRevision_02_11_06_Float.pdf
    // Type 6 is basically identical to type 5 without d

    // Y = (a * X + b) ^ Gamma + c
    case 6:
        e = Params[1]*R + Params[2];

        if (e < 0)
            Val = 0;
        else
            Val = pow(e, Params[0]) + Params[3];
        break;

    // ((Y - c) ^1/Gamma - b) / a
    case -6:
        e = R - Params[3];
        if (e < 0)
            Val = 0;
        else
        Val = (pow(e, 1.0/Params[0]) - Params[2]) / Params[1];
        break;


    // Y = a * log (b * X^Gamma + c) + d
    case 7:

       e = Params[2] * pow(R, Params[0]) + Params[3];
       if (e <= 0)
           Val = 0;
       else
           Val = Params[1]*log10(e) + Params[4];
       break;

    // (Y - d) / a = log(b * X ^Gamma + c)
    // pow(10, (Y-d) / a) = b * X ^Gamma + c
    // pow((pow(10, (Y-d) / a) - c) / b, 1/g) = X
    case -7:
       Val = pow((pow(10.0, (R-Params[4]) / Params[1]) - Params[3]) / Params[2], 1.0 / Params[0]);
       break;


   //Y = a * b^(c*X+d) + e
   case 8:
       Val = (Params[0] * pow(Params[1], Params[2] * R + Params[3]) + Params[4]);
       break;


   // Y = (log((y-e) / a) / log(b) - d ) / c
   // a=0, b=1, c=2, d=3, e=4,
   case -8:

       disc = R - Params[4];
       if (disc < 0) Val = 0;
       else
           Val = (log(disc / Params[0]) / log(Params[1]) - Params[3]) / Params[2];
       break;

   // S-Shaped: (1 - (1-x)^1/g)^1/g
   case 108:
      Val = pow(1.0 - pow(1 - R, 1/Params[0]), 1/Params[0]);
      break;

    // y = (1 - (1-x)^1/g)^1/g
    // y^g = (1 - (1-x)^1/g)
    // 1 - y^g = (1-x)^1/g
    // (1 - y^g)^g = 1 - x
    // 1 - (1 - y^g)^g
    case -108:
        Val = 1 - pow(1 - pow(R, Params[0]), Params[0]);
        break;

    default:
        // Unsupported parametric curve. Should never reach here
        return 0;
    }

    return Val;
}

// Evaluate a segmented funtion for a single value. Return -1 if no valid segment found .
// If fn type is 0, perform an interpolation on the table
static
cmsFloat64Number EvalSegmentedFn(const cmsToneCurve *g, cmsFloat64Number R)
{
    int i;

    for (i = g ->nSegments-1; i >= 0 ; --i) {

        // Check for domain
        if ((R > g ->Segments[i].x0) && (R <= g ->Segments[i].x1)) {

            // Type == 0 means segment is sampled
            if (g ->Segments[i].Type == 0) {

                cmsFloat32Number R1 = (cmsFloat32Number) (R - g ->Segments[i].x0);
                cmsFloat32Number Out;

                // Setup the table (TODO: clean that)
                g ->SegInterp[i]-> Table = g ->Segments[i].SampledPoints;

                g ->SegInterp[i] -> Interpolation.LerpFloat(&R1, &Out, g ->SegInterp[i]);

                return Out;
            }
            else
                return g ->Evals[i](g->Segments[i].Type, g ->Segments[i].Params, R);
        }
    }

    return MINUS_INF;
}

// Access to estimated low-res table
cmsUInt32Number CMSEXPORT cmsGetToneCurveEstimatedTableEntries(const cmsToneCurve* t)
{
    _cmsAssert(t != NULL);
    return t ->nEntries;
}

const cmsUInt16Number* CMSEXPORT cmsGetToneCurveEstimatedTable(const cmsToneCurve* t)
{
    _cmsAssert(t != NULL);
    return t ->Table16;
}


// Create an empty gamma curve, by using tables. This specifies only the limited-precision part, and leaves the
// floating point description empty.
cmsToneCurve* CMSEXPORT cmsBuildTabulatedToneCurve16(cmsContext ContextID, cmsInt32Number nEntries, const cmsUInt16Number Values[])
{
    return AllocateToneCurveStruct(ContextID, nEntries, 0, NULL, Values);
}

static
int EntriesByGamma(cmsFloat64Number Gamma)
{
    if (fabs(Gamma - 1.0) < 0.001) return 2;
    return 4096;
}


// Create a segmented gamma, fill the table
cmsToneCurve* CMSEXPORT cmsBuildSegmentedToneCurve(cmsContext ContextID,
                                                   cmsInt32Number nSegments, const cmsCurveSegment Segments[])
{
    int i;
    cmsFloat64Number R, Val;
    cmsToneCurve* g;
    int nGridPoints = 4096;

    _cmsAssert(Segments != NULL);

    // Optimizatin for identity curves.
    if (nSegments == 1 && Segments[0].Type == 1) {

        nGridPoints = EntriesByGamma(Segments[0].Params[0]);
    }

    g = AllocateToneCurveStruct(ContextID, nGridPoints, nSegments, Segments, NULL);
    if (g == NULL) return NULL;

    // Once we have the floating point version, we can approximate a 16 bit table of 4096 entries
    // for performance reasons. This table would normally not be used except on 8/16 bits transforms.
    for (i=0; i < nGridPoints; i++) {

        R   = (cmsFloat64Number) i / (nGridPoints-1);

        Val = EvalSegmentedFn(g, R);

        // Round and saturate
        g ->Table16[i] = _cmsQuickSaturateWord(Val * 65535.0);
    }

    return g;
}

// Use a segmented curve to store the floating point table
cmsToneCurve* CMSEXPORT cmsBuildTabulatedToneCurveFloat(cmsContext ContextID, cmsUInt32Number nEntries, const cmsFloat32Number values[])
{
    cmsCurveSegment Seg[2];

    // Initialize segmented curve part up to 0
    Seg[0].x0 = -1;
    Seg[0].x1 = 0;
    Seg[0].Type = 6;

    Seg[0].Params[0] = 1;
    Seg[0].Params[1] = 0;
    Seg[0].Params[2] = 0;
    Seg[0].Params[3] = 0;
    Seg[0].Params[4] = 0;

    // From zero to any
    Seg[1].x0 = 0;
    Seg[1].x1 = 1.0;
    Seg[1].Type = 0;

    Seg[1].nGridPoints = nEntries;
    Seg[1].SampledPoints = (cmsFloat32Number*) values;

    return cmsBuildSegmentedToneCurve(ContextID, 2, Seg);
}

// Parametric curves
//
// Parameters goes as: Curve, a, b, c, d, e, f
// Type is the ICC type +1
// if type is negative, then the curve is analyticaly inverted
cmsToneCurve* CMSEXPORT cmsBuildParametricToneCurve(cmsContext ContextID, cmsInt32Number Type, const cmsFloat64Number Params[])
{
    cmsCurveSegment Seg0;
    int Pos = 0;
    cmsUInt32Number size;
    _cmsParametricCurvesCollection* c = GetParametricCurveByType(Type, &Pos);

    _cmsAssert(Params != NULL);

    if (c == NULL) {
         cmsSignalError(ContextID, cmsERROR_UNKNOWN_EXTENSION, "Invalid parametric curve type %d", Type);
        return NULL;
    }

    memset(&Seg0, 0, sizeof(Seg0));

    Seg0.x0   = MINUS_INF;
    Seg0.x1   = PLUS_INF;
    Seg0.Type = Type;

    size = c->ParameterCount[Pos] * sizeof(cmsFloat64Number);
    memmove(Seg0.Params, Params, size);

    return cmsBuildSegmentedToneCurve(ContextID, 1, &Seg0);
}



// Build a gamma table based on gamma constant
cmsToneCurve* CMSEXPORT cmsBuildGamma(cmsContext ContextID, cmsFloat64Number Gamma)
{
    return cmsBuildParametricToneCurve(ContextID, 1, &Gamma);
}


// Free all memory taken by the gamma curve
void CMSEXPORT cmsFreeToneCurve(cmsToneCurve* Curve)
{
    cmsContext ContextID;

    if (Curve == NULL) return;

    ContextID = Curve ->InterpParams->ContextID;

    _cmsFreeInterpParams(Curve ->InterpParams);

    if (Curve -> Table16)
        _cmsFree(ContextID, Curve ->Table16);

    if (Curve ->Segments) {

        cmsUInt32Number i;

        for (i=0; i < Curve ->nSegments; i++) {

            if (Curve ->Segments[i].SampledPoints) {
                _cmsFree(ContextID, Curve ->Segments[i].SampledPoints);
            }

            if (Curve ->SegInterp[i] != 0)
                _cmsFreeInterpParams(Curve->SegInterp[i]);
        }

        _cmsFree(ContextID, Curve ->Segments);
        _cmsFree(ContextID, Curve ->SegInterp);
    }

    if (Curve -> Evals)
        _cmsFree(ContextID, Curve -> Evals);

    if (Curve) _cmsFree(ContextID, Curve);
}

// Utility function, free 3 gamma tables
void CMSEXPORT cmsFreeToneCurveTriple(cmsToneCurve* Curve[3])
{

    _cmsAssert(Curve != NULL);

    if (Curve[0] != NULL) cmsFreeToneCurve(Curve[0]);
    if (Curve[1] != NULL) cmsFreeToneCurve(Curve[1]);
    if (Curve[2] != NULL) cmsFreeToneCurve(Curve[2]);

    Curve[0] = Curve[1] = Curve[2] = NULL;
}


// Duplicate a gamma table
cmsToneCurve* CMSEXPORT cmsDupToneCurve(const cmsToneCurve* In)
{
    if (In == NULL) return NULL;

    return  AllocateToneCurveStruct(In ->InterpParams ->ContextID, In ->nEntries, In ->nSegments, In ->Segments, In ->Table16);
}

// Joins two curves for X and Y. Curves should be monotonic.
// We want to get
//
//      y = Y^-1(X(t))
//
cmsToneCurve* CMSEXPORT cmsJoinToneCurve(cmsContext ContextID,
                                      const cmsToneCurve* X,
                                      const cmsToneCurve* Y, cmsUInt32Number nResultingPoints)
{
    cmsToneCurve* out = NULL;
    cmsToneCurve* Yreversed = NULL;
    cmsFloat32Number t, x;
    cmsFloat32Number* Res = NULL;
    cmsUInt32Number i;


    _cmsAssert(X != NULL);
    _cmsAssert(Y != NULL);

    Yreversed = cmsReverseToneCurveEx(nResultingPoints, Y);
    if (Yreversed == NULL) goto Error;

    Res = (cmsFloat32Number*) _cmsCalloc(ContextID, nResultingPoints, sizeof(cmsFloat32Number));
    if (Res == NULL) goto Error;

    //Iterate
    for (i=0; i <  nResultingPoints; i++) {

        t = (cmsFloat32Number) i / (nResultingPoints-1);
        x = cmsEvalToneCurveFloat(X,  t);
        Res[i] = cmsEvalToneCurveFloat(Yreversed, x);
    }

    // Allocate space for output
    out = cmsBuildTabulatedToneCurveFloat(ContextID, nResultingPoints, Res);

Error:

    if (Res != NULL) _cmsFree(ContextID, Res);
    if (Yreversed != NULL) cmsFreeToneCurve(Yreversed);

    return out;
}



// Get the surrounding nodes. This is tricky on non-monotonic tables
static
int GetInterval(cmsFloat64Number In, const cmsUInt16Number LutTable[], const struct _cms_interp_struc* p)
{
    int i;
    int y0, y1;

    // A 1 point table is not allowed
    if (p -> Domain[0] < 1) return -1;

    // Let's see if ascending or descending.
    if (LutTable[0] < LutTable[p ->Domain[0]]) {

        // Table is overall ascending
        for (i=p->Domain[0]-1; i >=0; --i) {

            y0 = LutTable[i];
            y1 = LutTable[i+1];

            if (y0 <= y1) { // Increasing
                if (In >= y0 && In <= y1) return i;
            }
            else
                if (y1 < y0) { // Decreasing
                    if (In >= y1 && In <= y0) return i;
                }
        }
    }
    else {
        // Table is overall descending
        for (i=0; i < (int) p -> Domain[0]; i++) {

            y0 = LutTable[i];
            y1 = LutTable[i+1];

            if (y0 <= y1) { // Increasing
                if (In >= y0 && In <= y1) return i;
            }
            else
                if (y1 < y0) { // Decreasing
                    if (In >= y1 && In <= y0) return i;
                }
        }
    }

    return -1;
}

// Reverse a gamma table
cmsToneCurve* CMSEXPORT cmsReverseToneCurveEx(cmsInt32Number nResultSamples, const cmsToneCurve* InCurve)
{
    cmsToneCurve *out;
    cmsFloat64Number a = 0, b = 0, y, x1, y1, x2, y2;
    int i, j;
    int Ascending;

    _cmsAssert(InCurve != NULL);

    // Try to reverse it analytically whatever possible
    if (InCurve ->nSegments == 1 && InCurve ->Segments[0].Type > 0 && InCurve -> Segments[0].Type <= 5) {

        return cmsBuildParametricToneCurve(InCurve ->InterpParams->ContextID,
                                       -(InCurve -> Segments[0].Type),
                                       InCurve -> Segments[0].Params);
    }

    // Nope, reverse the table.
    out = cmsBuildTabulatedToneCurve16(InCurve ->InterpParams->ContextID, nResultSamples, NULL);
    if (out == NULL)
        return NULL;

    // We want to know if this is an ascending or descending table
    Ascending = !cmsIsToneCurveDescending(InCurve);

    // Iterate across Y axis
    for (i=0; i <  nResultSamples; i++) {

        y = (cmsFloat64Number) i * 65535.0 / (nResultSamples - 1);

        // Find interval in which y is within.
        j = GetInterval(y, InCurve->Table16, InCurve->InterpParams);
        if (j >= 0) {


            // Get limits of interval
            x1 = InCurve ->Table16[j];
            x2 = InCurve ->Table16[j+1];

            y1 = (cmsFloat64Number) (j * 65535.0) / (InCurve ->nEntries - 1);
            y2 = (cmsFloat64Number) ((j+1) * 65535.0 ) / (InCurve ->nEntries - 1);

            // If collapsed, then use any
            if (x1 == x2) {

                out ->Table16[i] = _cmsQuickSaturateWord(Ascending ? y2 : y1);
                continue;

            } else {

                // Interpolate
                a = (y2 - y1) / (x2 - x1);
                b = y2 - a * x2;
            }
        }

        out ->Table16[i] = _cmsQuickSaturateWord(a* y + b);
    }


    return out;
}

// Reverse a gamma table
cmsToneCurve* CMSEXPORT cmsReverseToneCurve(const cmsToneCurve* InGamma)
{
    _cmsAssert(InGamma != NULL);

    return cmsReverseToneCurveEx(4096, InGamma);
}

// From: Eilers, P.H.C. (1994) Smoothing and interpolation with finite
// differences. in: Graphic Gems IV, Heckbert, P.S. (ed.), Academic press.
//
// Smoothing and interpolation with second differences.
//
//   Input:  weights (w), data (y): vector from 1 to m.
//   Input:  smoothing parameter (lambda), length (m).
//   Output: smoothed vector (z): vector from 1 to m.

static
cmsBool smooth2(cmsContext ContextID, cmsFloat32Number w[], cmsFloat32Number y[], cmsFloat32Number z[], cmsFloat32Number lambda, int m)
{
    int i, i1, i2;
    cmsFloat32Number *c, *d, *e;
    cmsBool st;


    c = (cmsFloat32Number*) _cmsCalloc(ContextID, MAX_NODES_IN_CURVE, sizeof(cmsFloat32Number));
    d = (cmsFloat32Number*) _cmsCalloc(ContextID, MAX_NODES_IN_CURVE, sizeof(cmsFloat32Number));
    e = (cmsFloat32Number*) _cmsCalloc(ContextID, MAX_NODES_IN_CURVE, sizeof(cmsFloat32Number));

    if (c != NULL && d != NULL && e != NULL) {


    d[1] = w[1] + lambda;
    c[1] = -2 * lambda / d[1];
    e[1] = lambda /d[1];
    z[1] = w[1] * y[1];
    d[2] = w[2] + 5 * lambda - d[1] * c[1] *  c[1];
    c[2] = (-4 * lambda - d[1] * c[1] * e[1]) / d[2];
    e[2] = lambda / d[2];
    z[2] = w[2] * y[2] - c[1] * z[1];

    for (i = 3; i < m - 1; i++) {
        i1 = i - 1; i2 = i - 2;
        d[i]= w[i] + 6 * lambda - c[i1] * c[i1] * d[i1] - e[i2] * e[i2] * d[i2];
        c[i] = (-4 * lambda -d[i1] * c[i1] * e[i1])/ d[i];
        e[i] = lambda / d[i];
        z[i] = w[i] * y[i] - c[i1] * z[i1] - e[i2] * z[i2];
    }

    i1 = m - 2; i2 = m - 3;

    d[m - 1] = w[m - 1] + 5 * lambda -c[i1] * c[i1] * d[i1] - e[i2] * e[i2] * d[i2];
    c[m - 1] = (-2 * lambda - d[i1] * c[i1] * e[i1]) / d[m - 1];
    z[m - 1] = w[m - 1] * y[m - 1] - c[i1] * z[i1] - e[i2] * z[i2];
    i1 = m - 1; i2 = m - 2;

    d[m] = w[m] + lambda - c[i1] * c[i1] * d[i1] - e[i2] * e[i2] * d[i2];
    z[m] = (w[m] * y[m] - c[i1] * z[i1] - e[i2] * z[i2]) / d[m];
    z[m - 1] = z[m - 1] / d[m - 1] - c[m - 1] * z[m];

    for (i = m - 2; 1<= i; i--)
        z[i] = z[i] / d[i] - c[i] * z[i + 1] - e[i] * z[i + 2];

      st = TRUE;
    }
    else st = FALSE;

    if (c != NULL) _cmsFree(ContextID, c);
    if (d != NULL) _cmsFree(ContextID, d);
    if (e != NULL) _cmsFree(ContextID, e);

    return st;
}

// Smooths a curve sampled at regular intervals.
cmsBool  CMSEXPORT cmsSmoothToneCurve(cmsToneCurve* Tab, cmsFloat64Number lambda)
{
    cmsFloat32Number w[MAX_NODES_IN_CURVE], y[MAX_NODES_IN_CURVE], z[MAX_NODES_IN_CURVE];
    int i, nItems, Zeros, Poles;

    if (Tab == NULL) return FALSE;

    if (cmsIsToneCurveLinear(Tab)) return FALSE; // Nothing to do

    nItems = Tab -> nEntries;

    if (nItems >= MAX_NODES_IN_CURVE) {
        cmsSignalError(Tab ->InterpParams->ContextID, cmsERROR_RANGE, "cmsSmoothToneCurve: too many points.");
        return FALSE;
    }

    memset(w, 0, nItems * sizeof(cmsFloat32Number));
    memset(y, 0, nItems * sizeof(cmsFloat32Number));
    memset(z, 0, nItems * sizeof(cmsFloat32Number));

    for (i=0; i < nItems; i++)
    {
        y[i+1] = (cmsFloat32Number) Tab -> Table16[i];
        w[i+1] = 1.0;
    }

    if (!smooth2(Tab ->InterpParams->ContextID, w, y, z, (cmsFloat32Number) lambda, nItems)) return FALSE;

    // Do some reality - checking...
    Zeros = Poles = 0;
    for (i=nItems; i > 1; --i) {

        if (z[i] == 0.) Zeros++;
        if (z[i] >= 65535.) Poles++;
        if (z[i] < z[i-1]) return FALSE; // Non-Monotonic
    }

    if (Zeros > (nItems / 3)) return FALSE;  // Degenerated, mostly zeros
    if (Poles > (nItems / 3)) return FALSE;  // Degenerated, mostly poles

    // Seems ok
    for (i=0; i < nItems; i++) {

        // Clamp to cmsUInt16Number
        Tab -> Table16[i] = _cmsQuickSaturateWord(z[i+1]);
    }

    return TRUE;
}

// Is a table linear? Do not use parametric since we cannot guarantee some weird parameters resulting
// in a linear table. This way assures it is linear in 12 bits, which should be enought in most cases.
cmsBool CMSEXPORT cmsIsToneCurveLinear(const cmsToneCurve* Curve)
{
    cmsUInt32Number i;
    int diff;

    _cmsAssert(Curve != NULL);

    for (i=0; i < Curve ->nEntries; i++) {

        diff = abs((int) Curve->Table16[i] - (int) _cmsQuantizeVal(i, Curve ->nEntries));
        if (diff > 0x0f)
            return FALSE;
    }

    return TRUE;
}

// Same, but for monotonicity
cmsBool  CMSEXPORT cmsIsToneCurveMonotonic(const cmsToneCurve* t)
{
    int n;
    int i, last;
    cmsBool lDescending;

    _cmsAssert(t != NULL);

    // Degenerated curves are monotonic? Ok, let's pass them
    n = t ->nEntries;
    if (n < 2) return TRUE;

    // Curve direction
    lDescending = cmsIsToneCurveDescending(t);

    if (lDescending) {

        last = t ->Table16[0];

        for (i = 1; i < n; i++) {

            if (t ->Table16[i] - last > 2) // We allow some ripple
                return FALSE;
            else
                last = t ->Table16[i];

        }
    }
    else {

        last = t ->Table16[n-1];

        for (i = n-2; i >= 0; --i) {

            if (t ->Table16[i] - last > 2)
                return FALSE;
            else
                last = t ->Table16[i];

        }
    }

    return TRUE;
}

// Same, but for descending tables
cmsBool  CMSEXPORT cmsIsToneCurveDescending(const cmsToneCurve* t)
{
    _cmsAssert(t != NULL);

    return t ->Table16[0] > t ->Table16[t ->nEntries-1];
}


// Another info fn: is out gamma table multisegment?
cmsBool  CMSEXPORT cmsIsToneCurveMultisegment(const cmsToneCurve* t)
{
    _cmsAssert(t != NULL);

    return t -> nSegments > 1;
}

cmsInt32Number  CMSEXPORT cmsGetToneCurveParametricType(const cmsToneCurve* t)
{
    _cmsAssert(t != NULL);

    if (t -> nSegments != 1) return 0;
    return t ->Segments[0].Type;
}

// We need accuracy this time
cmsFloat32Number CMSEXPORT cmsEvalToneCurveFloat(const cmsToneCurve* Curve, cmsFloat32Number v)
{
    _cmsAssert(Curve != NULL);

    // Check for 16 bits table. If so, this is a limited-precision tone curve
    if (Curve ->nSegments == 0) {

        cmsUInt16Number In, Out;

        In = (cmsUInt16Number) _cmsQuickSaturateWord(v * 65535.0);
        Out = cmsEvalToneCurve16(Curve, In);

        return (cmsFloat32Number) (Out / 65535.0);
    }

    return (cmsFloat32Number) EvalSegmentedFn(Curve, v);
}

// We need xput over here
cmsUInt16Number CMSEXPORT cmsEvalToneCurve16(const cmsToneCurve* Curve, cmsUInt16Number v)
{
    cmsUInt16Number out;

    _cmsAssert(Curve != NULL);

    Curve ->InterpParams ->Interpolation.Lerp16(&v, &out, Curve ->InterpParams);
    return out;
}


// Least squares fitting.
// A mathematical procedure for finding the best-fitting curve to a given set of points by
// minimizing the sum of the squares of the offsets ("the residuals") of the points from the curve.
// The sum of the squares of the offsets is used instead of the offset absolute values because
// this allows the residuals to be treated as a continuous differentiable quantity.
//
// y = f(x) = x ^ g
//
// R  = (yi - (xi^g))
// R2 = (yi - (xi^g))2
// SUM R2 = SUM (yi - (xi^g))2
//
// dR2/dg = -2 SUM x^g log(x)(y - x^g)
// solving for dR2/dg = 0
//
// g = 1/n * SUM(log(y) / log(x))

cmsFloat64Number CMSEXPORT cmsEstimateGamma(const cmsToneCurve* t, cmsFloat64Number Precision)
{
    cmsFloat64Number gamma, sum, sum2;
    cmsFloat64Number n, x, y, Std;
    cmsUInt32Number i;

    _cmsAssert(t != NULL);

    sum = sum2 = n = 0;

    // Excluding endpoints
    for (i=1; i < (MAX_NODES_IN_CURVE-1); i++) {

        x = (cmsFloat64Number) i / (MAX_NODES_IN_CURVE-1);
        y = (cmsFloat64Number) cmsEvalToneCurveFloat(t, (cmsFloat32Number) x);

        // Avoid 7% on lower part to prevent
        // artifacts due to linear ramps

        if (y > 0. && y < 1. && x > 0.07) {

            gamma = log(y) / log(x);
            sum  += gamma;
            sum2 += gamma * gamma;
            n++;
        }
    }

    // Take a look on SD to see if gamma isn't exponential at all
    Std = sqrt((n * sum2 - sum * sum) / (n*(n-1)));

    if (Std > Precision)
        return -1.0;

    return (sum / n);   // The mean
}

Other Java examples (source code examples)

Here is a short list of links related to this Java cmsgamma.c source code file:

... this post is sponsored by my books ...

#1 New Release!

FP Best Seller

 

new blog posts

 

Copyright 1998-2024 Alvin Alexander, alvinalexander.com
All Rights Reserved.

A percentage of advertising revenue from
pages under the /java/jwarehouse URI on this website is
paid back to open source projects.