alvinalexander.com | career | drupal | java | mac | mysql | perl | scala | uml | unix  

Java example source code file (cmswtpnt.c)

This example Java source code file (cmswtpnt.c) is included in the alvinalexander.com "Java Source Code Warehouse" project. The intent of this project is to help you "Learn Java by Example" TM.

Learn more about this Java project at its project page.

Java - Java tags/keywords

bradford, chad, cmsexport, conematrix, false, null, primrs, result, sourcewhitept, tempk, tmp, true, whitepoint

The cmswtpnt.c Java example source code

/*
 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
 *
 * This code is free software; you can redistribute it and/or modify it
 * under the terms of the GNU General Public License version 2 only, as
 * published by the Free Software Foundation.  Oracle designates this
 * particular file as subject to the "Classpath" exception as provided
 * by Oracle in the LICENSE file that accompanied this code.
 *
 * This code is distributed in the hope that it will be useful, but WITHOUT
 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
 * version 2 for more details (a copy is included in the LICENSE file that
 * accompanied this code).
 *
 * You should have received a copy of the GNU General Public License version
 * 2 along with this work; if not, write to the Free Software Foundation,
 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
 *
 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
 * or visit www.oracle.com if you need additional information or have any
 * questions.
 */

// This file is available under and governed by the GNU General Public
// License version 2 only, as published by the Free Software Foundation.
// However, the following notice accompanied the original version of this
// file:
//
//---------------------------------------------------------------------------------
//
//  Little Color Management System
//  Copyright (c) 1998-2010 Marti Maria Saguer
//
// Permission is hereby granted, free of charge, to any person obtaining
// a copy of this software and associated documentation files (the "Software"),
// to deal in the Software without restriction, including without limitation
// the rights to use, copy, modify, merge, publish, distribute, sublicense,
// and/or sell copies of the Software, and to permit persons to whom the Software
// is furnished to do so, subject to the following conditions:
//
// The above copyright notice and this permission notice shall be included in
// all copies or substantial portions of the Software.
//
// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
// EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO
// THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
// NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE
// LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION
// OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION
// WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
//
//---------------------------------------------------------------------------------
//

#include "lcms2_internal.h"


// D50 - Widely used
const cmsCIEXYZ* CMSEXPORT cmsD50_XYZ(void)
{
    static cmsCIEXYZ D50XYZ = {cmsD50X, cmsD50Y, cmsD50Z};

    return &D50XYZ;
}

const cmsCIExyY* CMSEXPORT cmsD50_xyY(void)
{
    static cmsCIExyY D50xyY;

    cmsXYZ2xyY(&D50xyY, cmsD50_XYZ());

    return &D50xyY;
}

// Obtains WhitePoint from Temperature
cmsBool  CMSEXPORT cmsWhitePointFromTemp(cmsCIExyY* WhitePoint, cmsFloat64Number TempK)
{
       cmsFloat64Number x, y;
       cmsFloat64Number T, T2, T3;
       // cmsFloat64Number M1, M2;

       _cmsAssert(WhitePoint != NULL);

       T = TempK;
       T2 = T*T;            // Square
       T3 = T2*T;           // Cube

       // For correlated color temperature (T) between 4000K and 7000K:

       if (T >= 4000. && T <= 7000.)
       {
              x = -4.6070*(1E9/T3) + 2.9678*(1E6/T2) + 0.09911*(1E3/T) + 0.244063;
       }
       else
              // or for correlated color temperature (T) between 7000K and 25000K:

       if (T > 7000.0 && T <= 25000.0)
       {
              x = -2.0064*(1E9/T3) + 1.9018*(1E6/T2) + 0.24748*(1E3/T) + 0.237040;
       }
       else {
              cmsSignalError(0, cmsERROR_RANGE, "cmsWhitePointFromTemp: invalid temp");
              return FALSE;
              }

       // Obtain y(x)

       y = -3.000*(x*x) + 2.870*x - 0.275;

       // wave factors (not used, but here for futures extensions)

       // M1 = (-1.3515 - 1.7703*x + 5.9114 *y)/(0.0241 + 0.2562*x - 0.7341*y);
       // M2 = (0.0300 - 31.4424*x + 30.0717*y)/(0.0241 + 0.2562*x - 0.7341*y);

       WhitePoint -> x = x;
       WhitePoint -> y = y;
       WhitePoint -> Y = 1.0;

       return TRUE;
}



typedef struct {

    cmsFloat64Number mirek;  // temp (in microreciprocal kelvin)
    cmsFloat64Number ut;     // u coord of intersection w/ blackbody locus
    cmsFloat64Number vt;     // v coord of intersection w/ blackbody locus
    cmsFloat64Number tt;     // slope of ISOTEMPERATURE. line

    } ISOTEMPERATURE;

static ISOTEMPERATURE isotempdata[] = {
//  {Mirek, Ut,       Vt,      Tt      }
    {0,     0.18006,  0.26352,  -0.24341},
    {10,    0.18066,  0.26589,  -0.25479},
    {20,    0.18133,  0.26846,  -0.26876},
    {30,    0.18208,  0.27119,  -0.28539},
    {40,    0.18293,  0.27407,  -0.30470},
    {50,    0.18388,  0.27709,  -0.32675},
    {60,    0.18494,  0.28021,  -0.35156},
    {70,    0.18611,  0.28342,  -0.37915},
    {80,    0.18740,  0.28668,  -0.40955},
    {90,    0.18880,  0.28997,  -0.44278},
    {100,   0.19032,  0.29326,  -0.47888},
    {125,   0.19462,  0.30141,  -0.58204},
    {150,   0.19962,  0.30921,  -0.70471},
    {175,   0.20525,  0.31647,  -0.84901},
    {200,   0.21142,  0.32312,  -1.0182 },
    {225,   0.21807,  0.32909,  -1.2168 },
    {250,   0.22511,  0.33439,  -1.4512 },
    {275,   0.23247,  0.33904,  -1.7298 },
    {300,   0.24010,  0.34308,  -2.0637 },
    {325,   0.24702,  0.34655,  -2.4681 },
    {350,   0.25591,  0.34951,  -2.9641 },
    {375,   0.26400,  0.35200,  -3.5814 },
    {400,   0.27218,  0.35407,  -4.3633 },
    {425,   0.28039,  0.35577,  -5.3762 },
    {450,   0.28863,  0.35714,  -6.7262 },
    {475,   0.29685,  0.35823,  -8.5955 },
    {500,   0.30505,  0.35907,  -11.324 },
    {525,   0.31320,  0.35968,  -15.628 },
    {550,   0.32129,  0.36011,  -23.325 },
    {575,   0.32931,  0.36038,  -40.770 },
    {600,   0.33724,  0.36051,  -116.45  }
};

#define NISO sizeof(isotempdata)/sizeof(ISOTEMPERATURE)


// Robertson's method
cmsBool  CMSEXPORT cmsTempFromWhitePoint(cmsFloat64Number* TempK, const cmsCIExyY* WhitePoint)
{
    cmsUInt32Number j;
    cmsFloat64Number us,vs;
    cmsFloat64Number uj,vj,tj,di,dj,mi,mj;
    cmsFloat64Number xs, ys;

    _cmsAssert(WhitePoint != NULL);
    _cmsAssert(TempK != NULL);

    di = mi = 0;
    xs = WhitePoint -> x;
    ys = WhitePoint -> y;

    // convert (x,y) to CIE 1960 (u,WhitePoint)

    us = (2*xs) / (-xs + 6*ys + 1.5);
    vs = (3*ys) / (-xs + 6*ys + 1.5);


    for (j=0; j < NISO; j++) {

        uj = isotempdata[j].ut;
        vj = isotempdata[j].vt;
        tj = isotempdata[j].tt;
        mj = isotempdata[j].mirek;

        dj = ((vs - vj) - tj * (us - uj)) / sqrt(1.0 + tj * tj);

        if ((j != 0) && (di/dj < 0.0)) {

            // Found a match
            *TempK = 1000000.0 / (mi + (di / (di - dj)) * (mj - mi));
            return TRUE;
        }

        di = dj;
        mi = mj;
    }

    // Not found
    return FALSE;
}


// Compute chromatic adaptation matrix using Chad as cone matrix

static
cmsBool ComputeChromaticAdaptation(cmsMAT3* Conversion,
                                const cmsCIEXYZ* SourceWhitePoint,
                                const cmsCIEXYZ* DestWhitePoint,
                                const cmsMAT3* Chad)

{

    cmsMAT3 Chad_Inv;
    cmsVEC3 ConeSourceXYZ, ConeSourceRGB;
    cmsVEC3 ConeDestXYZ, ConeDestRGB;
    cmsMAT3 Cone, Tmp;


    Tmp = *Chad;
    if (!_cmsMAT3inverse(&Tmp, &Chad_Inv)) return FALSE;

    _cmsVEC3init(&ConeSourceXYZ, SourceWhitePoint -> X,
                             SourceWhitePoint -> Y,
                             SourceWhitePoint -> Z);

    _cmsVEC3init(&ConeDestXYZ,   DestWhitePoint -> X,
                             DestWhitePoint -> Y,
                             DestWhitePoint -> Z);

    _cmsMAT3eval(&ConeSourceRGB, Chad, &ConeSourceXYZ);
    _cmsMAT3eval(&ConeDestRGB,   Chad, &ConeDestXYZ);

    // Build matrix
    _cmsVEC3init(&Cone.v[0], ConeDestRGB.n[0]/ConeSourceRGB.n[0],    0.0,  0.0);
    _cmsVEC3init(&Cone.v[1], 0.0,   ConeDestRGB.n[1]/ConeSourceRGB.n[1],   0.0);
    _cmsVEC3init(&Cone.v[2], 0.0,   0.0,   ConeDestRGB.n[2]/ConeSourceRGB.n[2]);


    // Normalize
    _cmsMAT3per(&Tmp, &Cone, Chad);
    _cmsMAT3per(Conversion, &Chad_Inv, &Tmp);

    return TRUE;
}

// Returns the final chrmatic adaptation from illuminant FromIll to Illuminant ToIll
// The cone matrix can be specified in ConeMatrix. If NULL, Bradford is assumed
cmsBool  _cmsAdaptationMatrix(cmsMAT3* r, const cmsMAT3* ConeMatrix, const cmsCIEXYZ* FromIll, const cmsCIEXYZ* ToIll)
{
    cmsMAT3 LamRigg   = {{ // Bradford matrix
        {{  0.8951,  0.2664, -0.1614 }},
        {{ -0.7502,  1.7135,  0.0367 }},
        {{  0.0389, -0.0685,  1.0296 }}
      }};

    if (ConeMatrix == NULL)
        ConeMatrix = &LamRigg;

    return ComputeChromaticAdaptation(r, FromIll, ToIll, ConeMatrix);
}

// Same as anterior, but assuming D50 destination. White point is given in xyY
static
cmsBool _cmsAdaptMatrixToD50(cmsMAT3* r, const cmsCIExyY* SourceWhitePt)
{
    cmsCIEXYZ Dn;
    cmsMAT3 Bradford;
    cmsMAT3 Tmp;

    cmsxyY2XYZ(&Dn, SourceWhitePt);

    if (!_cmsAdaptationMatrix(&Bradford, NULL, &Dn, cmsD50_XYZ())) return FALSE;

    Tmp = *r;
    _cmsMAT3per(r, &Bradford, &Tmp);

    return TRUE;
}

// Build a White point, primary chromas transfer matrix from RGB to CIE XYZ
// This is just an approximation, I am not handling all the non-linear
// aspects of the RGB to XYZ process, and assumming that the gamma correction
// has transitive property in the tranformation chain.
//
// the alghoritm:
//
//            - First I build the absolute conversion matrix using
//              primaries in XYZ. This matrix is next inverted
//            - Then I eval the source white point across this matrix
//              obtaining the coeficients of the transformation
//            - Then, I apply these coeficients to the original matrix
//
cmsBool _cmsBuildRGB2XYZtransferMatrix(cmsMAT3* r, const cmsCIExyY* WhitePt, const cmsCIExyYTRIPLE* Primrs)
{
    cmsVEC3 WhitePoint, Coef;
    cmsMAT3 Result, Primaries;
    cmsFloat64Number xn, yn;
    cmsFloat64Number xr, yr;
    cmsFloat64Number xg, yg;
    cmsFloat64Number xb, yb;

    xn = WhitePt -> x;
    yn = WhitePt -> y;
    xr = Primrs -> Red.x;
    yr = Primrs -> Red.y;
    xg = Primrs -> Green.x;
    yg = Primrs -> Green.y;
    xb = Primrs -> Blue.x;
    yb = Primrs -> Blue.y;

    // Build Primaries matrix
    _cmsVEC3init(&Primaries.v[0], xr,        xg,         xb);
    _cmsVEC3init(&Primaries.v[1], yr,        yg,         yb);
    _cmsVEC3init(&Primaries.v[2], (1-xr-yr), (1-xg-yg),  (1-xb-yb));


    // Result = Primaries ^ (-1) inverse matrix
    if (!_cmsMAT3inverse(&Primaries, &Result))
        return FALSE;


    _cmsVEC3init(&WhitePoint, xn/yn, 1.0, (1.0-xn-yn)/yn);

    // Across inverse primaries ...
    _cmsMAT3eval(&Coef, &Result, &WhitePoint);

    // Give us the Coefs, then I build transformation matrix
    _cmsVEC3init(&r -> v[0], Coef.n[VX]*xr,          Coef.n[VY]*xg,          Coef.n[VZ]*xb);
    _cmsVEC3init(&r -> v[1], Coef.n[VX]*yr,          Coef.n[VY]*yg,          Coef.n[VZ]*yb);
    _cmsVEC3init(&r -> v[2], Coef.n[VX]*(1.0-xr-yr), Coef.n[VY]*(1.0-xg-yg), Coef.n[VZ]*(1.0-xb-yb));


    return _cmsAdaptMatrixToD50(r, WhitePt);

}


// Adapts a color to a given illuminant. Original color is expected to have
// a SourceWhitePt white point.
cmsBool CMSEXPORT cmsAdaptToIlluminant(cmsCIEXYZ* Result,
                                       const cmsCIEXYZ* SourceWhitePt,
                                       const cmsCIEXYZ* Illuminant,
                                       const cmsCIEXYZ* Value)
{
    cmsMAT3 Bradford;
    cmsVEC3 In, Out;

    _cmsAssert(Result != NULL);
    _cmsAssert(SourceWhitePt != NULL);
    _cmsAssert(Illuminant != NULL);
    _cmsAssert(Value != NULL);

    if (!_cmsAdaptationMatrix(&Bradford, NULL, SourceWhitePt, Illuminant)) return FALSE;

    _cmsVEC3init(&In, Value -> X, Value -> Y, Value -> Z);
    _cmsMAT3eval(&Out, &Bradford, &In);

    Result -> X = Out.n[0];
    Result -> Y = Out.n[1];
    Result -> Z = Out.n[2];

    return TRUE;
}


Other Java examples (source code examples)

Here is a short list of links related to this Java cmswtpnt.c source code file:

... this post is sponsored by my books ...

#1 New Release!

FP Best Seller

 

new blog posts

 

Copyright 1998-2021 Alvin Alexander, alvinalexander.com
All Rights Reserved.

A percentage of advertising revenue from
pages under the /java/jwarehouse URI on this website is
paid back to open source projects.