The AlphaMath.h Java example source code
/*
* Copyright (c) 2000, 2005, Oracle and/or its affiliates. All rights reserved.
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
*
* This code is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License version 2 only, as
* published by the Free Software Foundation. Oracle designates this
* particular file as subject to the "Classpath" exception as provided
* by Oracle in the LICENSE file that accompanied this code.
*
* This code is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
* version 2 for more details (a copy is included in the LICENSE file that
* accompanied this code).
*
* You should have received a copy of the GNU General Public License version
* 2 along with this work; if not, write to the Free Software Foundation,
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
*
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
* or visit www.oracle.com if you need additional information or have any
* questions.
*/
#ifndef AlphaMath_h_Included
#define AlphaMath_h_Included
extern unsigned char mul8table[256][256];
extern unsigned char div8table[256][256];
extern void initAlphaTables();
/*
* Multiply and Divide macros for single byte (8-bit) quantities representing
* the values 0.0 to 1.0 as 0x00 to 0xff.
* MUL8 multiplies its operands together
* DIV8 divides the first operand by the second, clipping to 0xff
* (Note that since the divisor for DIV8 is likely to be
* the alpha quantity which is likely to be the same for
* multiple adjacent invocations, the table is designed
* with the first index being the divisor to hopefully
* improve memory cache hits...)
*/
#define MUL8(a,b) mul8table[a][b]
#define DIV8(a,b) div8table[b][a]
/*
* Multiply and Divide macros for operations involving a single short (16-bit)
* quantity and a single byte (8-bit) quantity. Typically, promoting the
* 8-bit value to 16 bits would lead to overflow when the operation occurs.
* These macros have been modified somewhat so that overflow will not occur.
* MUL8_16 multiplies an 8-bit value by a 16-bit value (the order of operands
* is unimportant since multiplication is a commutative operation)
* DIV16_8 divides the first (16-bit) operand by the second (8-bit) value
*/
#define MUL8_16(a,b) (((a) * (b)) / 255)
#define DIV16_8(a,b) (((a) * 255) / (b))
/*
* Multiply and Divide macros for single short (16-bit) quantities
* representing the values 0.0 to 1.0 as 0x0000 to 0xffff.
* MUL16 multiplies its operands using the standard multiplication operator
* and normalizes the result to the appropriate range
* DIV16 divides the first operand by the second and normalizes the result
* to a 16-bit value
*/
#define MUL16(a,b) (((a) * (b)) / 65535)
#define DIV16(a,b) (((a) * 65535) / (b))
/*
* Macro for the sum of two normalized (16-bit) products. Refer to the
* following equation and note that the right side reduces the number of
* divide operations in the left side and increases the precision of the
* result:
* a*f1 + b*f2 a*f1 + b*f2
* ---- ---- = ----------- (where n in this case will be 65535)
* n n n
*/
#define AddNormalizedProducts16(a, f1, b, f2) \
((((a) * (f1)) + ((b) * (f2))) / 65535)
/*
* The following macros help to generalize the MaskBlit and MaskFill loops
* found in AlphaMacros.h. The appropriate macros will be used based on the
* strategy of the given loop. The strategy types take the form:
* <number of components per pixel>
* For example, these are the current strategy types:
* 3ByteRgb (currently only used as a glyph list blending strategy where
* the alpha value itself is neither blended nor stored)
* 4ByteArgb (eg. IntArgb, ThreeByteBgr, Ushort555Rgb, ByteIndexed, etc.)
* 4ShortArgb (not used currently; could be used when surface types using
* 16 bits per component are implemented)
* 1ByteGray (eg. ByteGray)
* 1ShortGray (eg. UshortGray)
* Note that the macros which operate on alpha values have the word "Alpha"
* somewhere in their name. Those macros that only operate on the color/gray
* components of a given strategy will have the word "Components" or "Comps"
* in their name.
*/
/*
* MaxValFor ## STRATEGY
*/
#define MaxValFor4ByteArgb 0xff
#define MaxValFor1ByteGray 0xff
#define MaxValFor1ShortGray 0xffff
/*
* AlphaType ## STRATEGY
*/
#define AlphaType3ByteRgb jint
#define AlphaType4ByteArgb jint
#define AlphaType1ByteGray jint
#define AlphaType1ShortGray juint
/*
* ComponentType ## STRATEGY
*/
#define ComponentType3ByteRgb jint
#define ComponentType4ByteArgb jint
#define ComponentType1ByteGray jint
#define ComponentType1ShortGray juint
/*
* DeclareAlphaVarFor ## STRATEGY(VAR)
*
* jint a;
*/
#define DeclareAlphaVarFor3ByteRgb(VAR) \
AlphaType3ByteRgb VAR;
#define DeclareAlphaVarFor4ByteArgb(VAR) \
AlphaType4ByteArgb VAR;
#define DeclareAlphaVarFor1ByteGray(VAR) \
AlphaType1ByteGray VAR;
#define DeclareAlphaVarFor1ShortGray(VAR) \
AlphaType1ShortGray VAR;
/*
* DeclareAndInitAlphaVarFor ## STRATEGY(VAR, initval)
*
* jint a = initval;
*/
#define DeclareAndInitAlphaVarFor4ByteArgb(VAR, initval) \
AlphaType4ByteArgb VAR = initval;
#define DeclareAndInitAlphaVarFor1ByteGray(VAR, initval) \
AlphaType1ByteGray VAR = initval;
#define DeclareAndInitAlphaVarFor1ShortGray(VAR, initval) \
AlphaType1ShortGray VAR = initval;
/*
* DeclareAndClearAlphaVarFor ## STRATEGY(VAR)
*
* jint a = 0;
*/
#define DeclareAndClearAlphaVarFor4ByteArgb(VAR) \
DeclareAndInitAlphaVarFor4ByteArgb(VAR, 0)
#define DeclareAndClearAlphaVarFor1ByteGray(VAR) \
DeclareAndInitAlphaVarFor1ByteGray(VAR, 0)
#define DeclareAndClearAlphaVarFor1ShortGray(VAR) \
DeclareAndInitAlphaVarFor1ShortGray(VAR, 0)
/*
* DeclareAndSetOpaqueAlphaVarFor ## STRATEGY(VAR)
*
* jint a = 0xff;
*/
#define DeclareAndSetOpaqueAlphaVarFor4ByteArgb(VAR) \
DeclareAndInitAlphaVarFor4ByteArgb(VAR, MaxValFor4ByteArgb)
#define DeclareAndSetOpaqueAlphaVarFor1ByteGray(VAR) \
DeclareAndInitAlphaVarFor1ByteGray(VAR, MaxValFor1ByteGray)
#define DeclareAndSetOpaqueAlphaVarFor1ShortGray(VAR) \
DeclareAndInitAlphaVarFor1ShortGray(VAR, MaxValFor1ShortGray)
/*
* DeclareAndInvertAlphaVarFor ## STRATEGY(VAR, invalpha)
*
* jint a = 0xff - resA;
*/
#define DeclareAndInvertAlphaVarFor4ByteArgb(VAR, invalpha) \
DeclareAndInitAlphaVarFor4ByteArgb(VAR, MaxValFor4ByteArgb - invalpha)
#define DeclareAndInvertAlphaVarFor1ByteGray(VAR, invalpha) \
DeclareAndInitAlphaVarFor1ByteGray(VAR, MaxValFor1ByteGray - invalpha)
#define DeclareAndInvertAlphaVarFor1ShortGray(VAR, invalpha) \
DeclareAndInitAlphaVarFor1ShortGray(VAR, MaxValFor1ShortGray - invalpha)
/*
* DeclareCompVarsFor ## STRATEGY(PREFIX)
*
* jint c;
*/
#define DeclareCompVarsFor3ByteRgb(PREFIX) \
ComponentType3ByteRgb PREFIX ## R, PREFIX ## G, PREFIX ## B;
#define DeclareCompVarsFor4ByteArgb(PREFIX) \
ComponentType4ByteArgb PREFIX ## R, PREFIX ## G, PREFIX ## B;
#define DeclareCompVarsFor1ByteGray(PREFIX) \
ComponentType1ByteGray PREFIX ## G;
#define DeclareCompVarsFor1ShortGray(PREFIX) \
ComponentType1ShortGray PREFIX ## G;
/*
* DeclareAndInitExtraAlphaFor ## STRATEGY(VAR)
*
* jint extraA = (int)(pCompInfo->details.extraAlpha * 255.0 + 0.5);
*/
#define DeclareAndInitExtraAlphaFor4ByteArgb(VAR) \
AlphaType4ByteArgb VAR = \
(AlphaType4ByteArgb)(pCompInfo->details.extraAlpha * 255.0 + 0.5);
#define DeclareAndInitExtraAlphaFor1ByteGray(VAR) \
AlphaType1ByteGray VAR = \
(AlphaType1ByteGray)(pCompInfo->details.extraAlpha * 255.0 + 0.5);
#define DeclareAndInitExtraAlphaFor1ShortGray(VAR) \
AlphaType1ShortGray VAR = \
(AlphaType1ShortGray)(pCompInfo->details.extraAlpha * 65535.0 + 0.5);
/*
* PromoteByteAlphaFor ## STRATEGY(a)
*/
#define PromoteByteAlphaFor4ByteArgb(a)
#define PromoteByteAlphaFor1ByteGray(a)
#define PromoteByteAlphaFor1ShortGray(a) \
(a) = (((a) << 8) + (a))
/*
* DeclareAndInitPathAlphaFor ## STRATEGY(VAR)
*
* jint pathA = *pMask++;
*/
#define DeclareAndInitPathAlphaFor4ByteArgb(VAR) \
AlphaType4ByteArgb VAR = *pMask++;
#define DeclareAndInitPathAlphaFor1ByteGray(VAR) \
AlphaType1ByteGray VAR = *pMask++;
#define DeclareAndInitPathAlphaFor1ShortGray(VAR) \
AlphaType1ShortGray VAR = *pMask++;
/*
* MultiplyAlphaFor ## STRATEGY(a, b)
*
* a * b
*/
#define MultiplyAlphaFor4ByteArgb(a, b) \
MUL8(a, b)
#define MultiplyAlphaFor1ByteGray(a, b) \
MUL8(a, b)
#define MultiplyAlphaFor1ShortGray(a, b) \
MUL16(a, b)
/*
* MultiplyAndStore ## STRATEGY ## Comps(PROD_PREFIX, M1, M2_PREFIX)
*
* c = m1 * m2;
*/
#define MultiplyAndStore3Components(PROD_PREFIX, M1, M2_PREFIX, PRECISION) \
do { \
PROD_PREFIX ## R = MUL ## PRECISION(M1, M2_PREFIX ## R); \
PROD_PREFIX ## G = MUL ## PRECISION(M1, M2_PREFIX ## G); \
PROD_PREFIX ## B = MUL ## PRECISION(M1, M2_PREFIX ## B); \
} while (0)
#define MultiplyAndStore1Component(PROD_PREFIX, M1, M2_PREFIX, PRECISION) \
PROD_PREFIX ## G = MUL ## PRECISION(M1, M2_PREFIX ## G)
#define MultiplyAndStore4ByteArgbComps(PROD_PREFIX, M1, M2_PREFIX) \
MultiplyAndStore3Components(PROD_PREFIX, M1, M2_PREFIX, 8)
#define MultiplyAndStore1ByteGrayComps(PROD_PREFIX, M1, M2_PREFIX) \
MultiplyAndStore1Component(PROD_PREFIX, M1, M2_PREFIX, 8)
#define MultiplyAndStore1ShortGrayComps(PROD_PREFIX, M1, M2_PREFIX) \
MultiplyAndStore1Component(PROD_PREFIX, M1, M2_PREFIX, 16)
/*
* DivideAndStore ## STRATEGY ## Comps(QUOT_PREFIX, D1_PREFIX, D2)
*
* c = d1 / d2;
*/
#define DivideAndStore3Components(QUOT_PREFIX, D1_PREFIX, D2, PRECISION) \
do { \
QUOT_PREFIX ## R = DIV ## PRECISION(D1_PREFIX ## R, D2); \
QUOT_PREFIX ## G = DIV ## PRECISION(D1_PREFIX ## G, D2); \
QUOT_PREFIX ## B = DIV ## PRECISION(D1_PREFIX ## B, D2); \
} while (0)
#define DivideAndStore1Component(QUOT_PREFIX, D1_PREFIX, D2, PRECISION) \
QUOT_PREFIX ## G = DIV ## PRECISION(D1_PREFIX ## G, D2)
#define DivideAndStore4ByteArgbComps(QUOT_PREFIX, D1_PREFIX, D2) \
DivideAndStore3Components(QUOT_PREFIX, D1_PREFIX, D2, 8)
#define DivideAndStore1ByteGrayComps(QUOT_PREFIX, D1_PREFIX, D2) \
DivideAndStore1Component(QUOT_PREFIX, D1_PREFIX, D2, 8)
#define DivideAndStore1ShortGrayComps(QUOT_PREFIX, D1_PREFIX, D2) \
DivideAndStore1Component(QUOT_PREFIX, D1_PREFIX, D2, 16)
/*
* MultiplyAddAndStore ## STRATEGY ## Comps(RES_PREFIX, M1, \
* M2_PREFIX, A_PREFIX)
*
* c = (m1 * m2) + a;
*/
#define MultiplyAddAndStore3Components(RES_PREFIX, M1, M2_PREFIX, A_PREFIX, \
PRECISION) \
do { \
RES_PREFIX ## R = MUL ## PRECISION(M1, M2_PREFIX ## R) + \
A_PREFIX ## R; \
RES_PREFIX ## G = MUL ## PRECISION(M1, M2_PREFIX ## G) + \
A_PREFIX ## G; \
RES_PREFIX ## B = MUL ## PRECISION(M1, M2_PREFIX ## B) + \
A_PREFIX ## B; \
} while (0)
#define MultiplyAddAndStore1Component(RES_PREFIX, M1, M2_PREFIX, A_PREFIX, \
PRECISION) \
RES_PREFIX ## G = MUL ## PRECISION(M1, M2_PREFIX ## G) + A_PREFIX ## G
#define MultiplyAddAndStore4ByteArgbComps(RES_PREFIX, M1, M2_PREFIX, \
A_PREFIX) \
MultiplyAddAndStore3Components(RES_PREFIX, M1, M2_PREFIX, A_PREFIX, 8)
#define MultiplyAddAndStore1ByteGrayComps(RES_PREFIX, M1, M2_PREFIX, \
A_PREFIX) \
MultiplyAddAndStore1Component(RES_PREFIX, M1, M2_PREFIX, A_PREFIX, 8)
#define MultiplyAddAndStore1ShortGrayComps(RES_PREFIX, M1, M2_PREFIX, \
A_PREFIX) \
MultiplyAddAndStore1Component(RES_PREFIX, M1, M2_PREFIX, A_PREFIX, 16)
/*
* MultMultAddAndStore ## STRATEGY ## Comps(RES_PREFIX, M1, M2_PREFIX, \
* M3, M4_PREFIX)
*
* c = (m1 * m2) + (m3 * m4);
*/
#define MultMultAddAndStore3Components(RES_PREFIX, M1, M2_PREFIX, \
M3, M4_PREFIX, PRECISION) \
do { \
RES_PREFIX ## R = MUL ## PRECISION(M1, M2_PREFIX ## R) + \
MUL ## PRECISION(M3, M4_PREFIX ## R); \
RES_PREFIX ## G = MUL ## PRECISION(M1, M2_PREFIX ## G) + \
MUL ## PRECISION(M3, M4_PREFIX ## G); \
RES_PREFIX ## B = MUL ## PRECISION(M1, M2_PREFIX ## B) + \
MUL ## PRECISION(M3, M4_PREFIX ## B); \
} while (0)
#define MultMultAddAndStoreLCD3Components(RES_PREFIX, M1, M2_PREFIX, \
M3, M4_PREFIX, PRECISION) \
do { \
RES_PREFIX ## R = MUL ## PRECISION(M1 ## R, M2_PREFIX ## R) + \
MUL ## PRECISION(M3 ## R, M4_PREFIX ## R); \
RES_PREFIX ## G = MUL ## PRECISION(M1 ## G, M2_PREFIX ## G) + \
MUL ## PRECISION(M3 ## G, M4_PREFIX ## G); \
RES_PREFIX ## B = MUL ## PRECISION(M1 ## B, M2_PREFIX ## B) + \
MUL ## PRECISION(M3 ## B, M4_PREFIX ## B); \
} while (0)
#define MultMultAddAndStore1Component(RES_PREFIX, M1, M2_PREFIX, \
M3, M4_PREFIX, PRECISION) \
RES_PREFIX ## G = MUL ## PRECISION(M1, M2_PREFIX ## G) + \
MUL ## PRECISION(M3, M4_PREFIX ## G)
#define MultMultAddAndStore3ByteRgbComps(RES_PREFIX, M1, M2_PREFIX, \
M3, M4_PREFIX) \
MultMultAddAndStore3Components(RES_PREFIX, M1, M2_PREFIX, \
M3, M4_PREFIX, 8)
#define MultMultAddAndStoreLCD3ByteRgbComps(RES_PREFIX, M1, M2_PREFIX, \
M3, M4_PREFIX) \
MultMultAddAndStoreLCD3Components(RES_PREFIX, M1, M2_PREFIX, \
M3, M4_PREFIX, 8)
#define MultMultAddAndStore4ByteArgbComps(RES_PREFIX, M1, M2_PREFIX, \
M3, M4_PREFIX) \
MultMultAddAndStore3Components(RES_PREFIX, M1, M2_PREFIX, \
M3, M4_PREFIX, 8)
#define MultMultAddAndStoreLCD4ByteArgbComps(RES_PREFIX, M1, M2_PREFIX, \
M3, M4_PREFIX) \
MultMultAddAndStoreLCD3Components(RES_PREFIX, M1, M2_PREFIX, \
M3, M4_PREFIX, 8)
#define MultMultAddAndStore1ByteGrayComps(RES_PREFIX, M1, M2_PREFIX, \
M3, M4_PREFIX) \
MultMultAddAndStore1Component(RES_PREFIX, M1, M2_PREFIX, \
M3, M4_PREFIX, 8)
#define MultMultAddAndStore1ShortGrayComps(RES_PREFIX, M1, M2_PREFIX, \
M3, M4_PREFIX) \
RES_PREFIX ## G = AddNormalizedProducts16(M1, M2_PREFIX ## G, \
M3, M4_PREFIX ## G)
/*
* Store ## STRATEGY ## CompsUsingOp(L_PREFIX, OP, R_PREFIX)
*
* l op r; // where op can be something like = or +=
*/
#define Store3ComponentsUsingOp(L_PREFIX, OP, R_PREFIX) \
do { \
L_PREFIX ## R OP R_PREFIX ## R; \
L_PREFIX ## G OP R_PREFIX ## G; \
L_PREFIX ## B OP R_PREFIX ## B; \
} while (0)
#define Store1ComponentUsingOp(L_PREFIX, OP, R_PREFIX) \
L_PREFIX ## G OP R_PREFIX ## G
#define Store4ByteArgbCompsUsingOp(L_PREFIX, OP, R_PREFIX) \
Store3ComponentsUsingOp(L_PREFIX, OP, R_PREFIX)
#define Store1ByteGrayCompsUsingOp(L_PREFIX, OP, R_PREFIX) \
Store1ComponentUsingOp(L_PREFIX, OP, R_PREFIX)
#define Store1ShortGrayCompsUsingOp(L_PREFIX, OP, R_PREFIX) \
Store1ComponentUsingOp(L_PREFIX, OP, R_PREFIX)
/*
* Set ## STRATEGY ## CompsToZero(PREFIX)
*
* c = 0;
*/
#define Set4ByteArgbCompsToZero(PREFIX) \
PREFIX ## R = PREFIX ## G = PREFIX ## B = 0
#define Set1ByteGrayCompsToZero(PREFIX) \
PREFIX ## G = 0
#define Set1ShortGrayCompsToZero(PREFIX) \
PREFIX ## G = 0
#endif /* AlphaMath_h_Included */
Other Java examples (source code examples)
Here is a short list of links related to this Java AlphaMath.h source code file: