|
Java example source code file (DrawLine.c)
The DrawLine.c Java example source code/* * Copyright (c) 2000, 2001, Oracle and/or its affiliates. All rights reserved. * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. * * This code is free software; you can redistribute it and/or modify it * under the terms of the GNU General Public License version 2 only, as * published by the Free Software Foundation. Oracle designates this * particular file as subject to the "Classpath" exception as provided * by Oracle in the LICENSE file that accompanied this code. * * This code is distributed in the hope that it will be useful, but WITHOUT * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License * version 2 for more details (a copy is included in the LICENSE file that * accompanied this code). * * You should have received a copy of the GNU General Public License version * 2 along with this work; if not, write to the Free Software Foundation, * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. * * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA * or visit www.oracle.com if you need additional information or have any * questions. */ #include "GraphicsPrimitiveMgr.h" #include "LineUtils.h" #include "sun_java2d_loops_DrawLine.h" #define OUTCODE_TOP 1 #define OUTCODE_BOTTOM 2 #define OUTCODE_LEFT 4 #define OUTCODE_RIGHT 8 static void RefineBounds(SurfaceDataBounds *bounds, jint x1, jint y1, jint x2, jint y2) { jint min, max; if (x1 < x2) { min = x1; max = x2; } else { min = x2; max = x1; } max++; if (max <= min) { /* integer overflow */ max--; } if (bounds->x1 < min) bounds->x1 = min; if (bounds->x2 > max) bounds->x2 = max; if (y1 < y2) { min = y1; max = y2; } else { min = y2; max = y1; } max++; if (max <= min) { /* integer overflow */ max--; } if (bounds->y1 < min) bounds->y1 = min; if (bounds->y2 > max) bounds->y2 = max; } #define _out(v, vmin, vmax, cmin, cmax) \ ((v < vmin) ? cmin : ((v > vmax) ? cmax : 0)) #define outcode(x, y, xmin, ymin, xmax, ymax) \ (_out(y, ymin, ymax, OUTCODE_TOP, OUTCODE_BOTTOM) | \ _out(x, xmin, xmax, OUTCODE_LEFT, OUTCODE_RIGHT)) /* * "Small" math here will be done if the coordinates are less * than 15 bits in range (-16384 => 16383). This could be * expanded to 16 bits if we rearrange some of the math in * the normal version of SetupBresenham. * "Big" math here will be done with coordinates with 30 bits * of total range - 2 bits less than a jint holds. * Intermediate calculations for "Big" coordinates will be * done using jlong variables. */ #define OverflowsSmall(v) ((v) != (((v) << 17) >> 17)) #define OverflowsBig(v) ((v) != (((v) << 2) >> 2)) #define BIG_MAX ((1 << 29) - 1) #define BIG_MIN (-(1 << 29)) #define SETUP_BRESENHAM(CALC_TYPE, ORIGX1, ORIGY1, ORIGX2, ORIGY2, SHORTEN) \ do { \ jint X1 = ORIGX1, Y1 = ORIGY1, X2 = ORIGX2, Y2 = ORIGY2; \ jint dx, dy, ax, ay; \ jint cxmin, cymin, cxmax, cymax; \ jint outcode1, outcode2; \ jboolean xmajor; \ jint errminor, errmajor; \ jint error; \ jint steps; \ \ dx = X2 - X1; \ dy = Y2 - Y1; \ ax = (dx < 0) ? -dx : dx; \ ay = (dy < 0) ? -dy : dy; \ \ cxmin = pBounds->x1; \ cymin = pBounds->y1; \ cxmax = pBounds->x2 - 1; \ cymax = pBounds->y2 - 1; \ xmajor = (ax >= ay); \ \ outcode1 = outcode(X1, Y1, cxmin, cymin, cxmax, cymax); \ outcode2 = outcode(X2, Y2, cxmin, cymin, cxmax, cymax); \ while ((outcode1 | outcode2) != 0) { \ CALC_TYPE xsteps, ysteps; \ if ((outcode1 & outcode2) != 0) { \ return JNI_FALSE; \ } \ if (outcode1 != 0) { \ if (outcode1 & (OUTCODE_TOP | OUTCODE_BOTTOM)) { \ if (outcode1 & OUTCODE_TOP) { \ Y1 = cymin; \ } else { \ Y1 = cymax; \ } \ ysteps = Y1 - ORIGY1; \ if (ysteps < 0) { \ ysteps = -ysteps; \ } \ xsteps = 2 * ysteps * ax + ay; \ if (xmajor) { \ xsteps += ay - ax - 1; \ } \ xsteps = xsteps / (2 * ay); \ if (dx < 0) { \ xsteps = -xsteps; \ } \ X1 = ORIGX1 + (jint) xsteps; \ } else if (outcode1 & (OUTCODE_LEFT | OUTCODE_RIGHT)) { \ if (outcode1 & OUTCODE_LEFT) { \ X1 = cxmin; \ } else { \ X1 = cxmax; \ } \ xsteps = X1 - ORIGX1; \ if (xsteps < 0) { \ xsteps = -xsteps; \ } \ ysteps = 2 * xsteps * ay + ax; \ if (!xmajor) { \ ysteps += ax - ay - 1; \ } \ ysteps = ysteps / (2 * ax); \ if (dy < 0) { \ ysteps = -ysteps; \ } \ Y1 = ORIGY1 + (jint) ysteps; \ } \ outcode1 = outcode(X1, Y1, cxmin, cymin, cxmax, cymax); \ } else { \ if (outcode2 & (OUTCODE_TOP | OUTCODE_BOTTOM)) { \ if (outcode2 & OUTCODE_TOP) { \ Y2 = cymin; \ } else { \ Y2 = cymax; \ } \ ysteps = Y2 - ORIGY2; \ if (ysteps < 0) { \ ysteps = -ysteps; \ } \ xsteps = 2 * ysteps * ax + ay; \ if (xmajor) { \ xsteps += ay - ax; \ } else { \ xsteps -= 1; \ } \ xsteps = xsteps / (2 * ay); \ if (dx > 0) { \ xsteps = -xsteps; \ } \ X2 = ORIGX2 + (jint) xsteps; \ } else if (outcode2 & (OUTCODE_LEFT | OUTCODE_RIGHT)) { \ if (outcode2 & OUTCODE_LEFT) { \ X2 = cxmin; \ } else { \ X2 = cxmax; \ } \ xsteps = X2 - ORIGX2; \ if (xsteps < 0) { \ xsteps = -xsteps; \ } \ ysteps = 2 * xsteps * ay + ax; \ if (xmajor) { \ ysteps -= 1; \ } else { \ ysteps += ax - ay; \ } \ ysteps = ysteps / (2 * ax); \ if (dy > 0) { \ ysteps = -ysteps; \ } \ Y2 = ORIGY2 + (jint) ysteps; \ } \ outcode2 = outcode(X2, Y2, cxmin, cymin, cxmax, cymax); \ } \ } \ *pStartX = X1; \ *pStartY = Y1; \ \ if (xmajor) { \ errmajor = ay * 2; \ errminor = ax * 2; \ *pBumpMajorMask = (dx < 0) ? BUMP_NEG_PIXEL : BUMP_POS_PIXEL; \ *pBumpMinorMask = (dy < 0) ? BUMP_NEG_SCAN : BUMP_POS_SCAN; \ ax = -ax; /* For clipping adjustment below */ \ steps = X2 - X1; \ if (X2 != ORIGX2) { \ SHORTEN = 0; \ } \ } else { \ errmajor = ax * 2; \ errminor = ay * 2; \ *pBumpMajorMask = (dy < 0) ? BUMP_NEG_SCAN : BUMP_POS_SCAN; \ *pBumpMinorMask = (dx < 0) ? BUMP_NEG_PIXEL : BUMP_POS_PIXEL; \ ay = -ay; /* For clipping adjustment below */ \ steps = Y2 - Y1; \ if (Y2 != ORIGY2) { \ SHORTEN = 0; \ } \ } \ if ((steps = ((steps >= 0) ? steps : -steps) + 1 - SHORTEN) == 0) { \ return JNI_FALSE; \ } \ error = - (errminor / 2); \ if (Y1 != ORIGY1) { \ jint ysteps = Y1 - ORIGY1; \ if (ysteps < 0) { \ ysteps = -ysteps; \ } \ error += ysteps * ax * 2; \ } \ if (X1 != ORIGX1) { \ jint xsteps = X1 - ORIGX1; \ if (xsteps < 0) { \ xsteps = -xsteps; \ } \ error += xsteps * ay * 2; \ } \ error += errmajor; \ errminor -= errmajor; \ \ *pSteps = steps; \ *pError = error; \ *pErrMajor = errmajor; \ *pErrMinor = errminor; \ } while (0) static jboolean LineUtils_SetupBresenhamBig(jint _x1, jint _y1, jint _x2, jint _y2, jint shorten, SurfaceDataBounds *pBounds, jint *pStartX, jint *pStartY, jint *pSteps, jint *pError, jint *pErrMajor, jint *pBumpMajorMask, jint *pErrMinor, jint *pBumpMinorMask) { /* * Part of calculating the Bresenham parameters for line stepping * involves being able to store numbers that are twice the magnitude * of the biggest absolute difference in coordinates. Since we * want the stepping parameters to be stored in jints, we then need * to avoid any absolute differences more than 30 bits. Thus, we * need to preprocess the coordinates to reduce their range to 30 * bits regardless of clipping. We need to cut their range back * before we do the clipping because the Bresenham stepping values * need to be calculated based on the "unclipped" coordinates. * * Thus, first we perform a "pre-clipping" stage to bring the * coordinates within the 30-bit range and then we proceed to the * regular clipping procedure, pretending that these were the * original coordinates all along. Since this operation occurs * based on a constant "pre-clip" rectangle of +/- 30 bits without * any consideration for the final clip, the rounding errors that * occur here will depend only on the line coordinates and be * invariant with respect to the particular device/user clip * rectangles in effect at the time. Thus, rendering a given * large-range line will be consistent under a variety of * clipping conditions. */ if (OverflowsBig(_x1) || OverflowsBig(_y1) || OverflowsBig(_x2) || OverflowsBig(_y2)) { /* * Use doubles to get us into range for "Big" arithmetic. * * The math of adjusting an endpoint for clipping can involve * an intermediate result with twice the number of bits as the * original coordinate range. Since we want to maintain as * much as 30 bits of precision in the resulting coordinates, * we will get roundoff here even using IEEE double-precision * arithmetic which cannot carry 60 bits of mantissa. Since * the rounding errors will be consistent for a given set * of input coordinates the potential roundoff error should * not affect the consistency of our rendering. */ double X1d = _x1; double Y1d = _y1; double X2d = _x2; double Y2d = _y2; double DXd = X2d - X1d; double DYd = Y2d - Y1d; if (_x1 < BIG_MIN) { Y1d = _y1 + (BIG_MIN - _x1) * DYd / DXd; X1d = BIG_MIN; } else if (_x1 > BIG_MAX) { Y1d = _y1 - (_x1 - BIG_MAX) * DYd / DXd; X1d = BIG_MAX; } /* Use Y1d instead of _y1 for testing now as we may have modified it */ if (Y1d < BIG_MIN) { X1d = _x1 + (BIG_MIN - _y1) * DXd / DYd; Y1d = BIG_MIN; } else if (Y1d > BIG_MAX) { X1d = _x1 - (_y1 - BIG_MAX) * DXd / DYd; Y1d = BIG_MAX; } if (_x2 < BIG_MIN) { Y2d = _y2 + (BIG_MIN - _x2) * DYd / DXd; X2d = BIG_MIN; } else if (_x2 > BIG_MAX) { Y2d = _y2 - (_x2 - BIG_MAX) * DYd / DXd; X2d = BIG_MAX; } /* Use Y2d instead of _y2 for testing now as we may have modified it */ if (Y2d < BIG_MIN) { X2d = _x2 + (BIG_MIN - _y2) * DXd / DYd; Y2d = BIG_MIN; } else if (Y2d > BIG_MAX) { X2d = _x2 - (_y2 - BIG_MAX) * DXd / DYd; Y2d = BIG_MAX; } _x1 = (int) X1d; _y1 = (int) Y1d; _x2 = (int) X2d; _y2 = (int) Y2d; } SETUP_BRESENHAM(jlong, _x1, _y1, _x2, _y2, shorten); return JNI_TRUE; } jboolean LineUtils_SetupBresenham(jint _x1, jint _y1, jint _x2, jint _y2, jint shorten, SurfaceDataBounds *pBounds, jint *pStartX, jint *pStartY, jint *pSteps, jint *pError, jint *pErrMajor, jint *pBumpMajorMask, jint *pErrMinor, jint *pBumpMinorMask) { if (OverflowsSmall(_x1) || OverflowsSmall(_y1) || OverflowsSmall(_x2) || OverflowsSmall(_y2)) { return LineUtils_SetupBresenhamBig(_x1, _y1, _x2, _y2, shorten, pBounds, pStartX, pStartY, pSteps, pError, pErrMajor, pBumpMajorMask, pErrMinor, pBumpMinorMask); } SETUP_BRESENHAM(jint, _x1, _y1, _x2, _y2, shorten); return JNI_TRUE; } /* * Class: sun_java2d_loops_DrawLine * Method: DrawLine * Signature: (Lsun/java2d/SunGraphics2D;Lsun/java2d/SurfaceData;IIII)V */ JNIEXPORT void JNICALL Java_sun_java2d_loops_DrawLine_DrawLine (JNIEnv *env, jobject self, jobject sg2d, jobject sData, jint x1, jint y1, jint x2, jint y2) { SurfaceDataOps *sdOps; SurfaceDataRasInfo rasInfo; NativePrimitive *pPrim; CompositeInfo compInfo; jint pixel = GrPrim_Sg2dGetPixel(env, sg2d); pPrim = GetNativePrim(env, self); if (pPrim == NULL) { return; } if (pPrim->pCompType->getCompInfo != NULL) { GrPrim_Sg2dGetCompInfo(env, sg2d, pPrim, &compInfo); } sdOps = SurfaceData_GetOps(env, sData); if (sdOps == 0) { return; } GrPrim_Sg2dGetClip(env, sg2d, &rasInfo.bounds); RefineBounds(&rasInfo.bounds, x1, y1, x2, y2); if (sdOps->Lock(env, sdOps, &rasInfo, pPrim->dstflags) != SD_SUCCESS) { return; } if (rasInfo.bounds.x2 > rasInfo.bounds.x1 && rasInfo.bounds.y2 > rasInfo.bounds.y1) { sdOps->GetRasInfo(env, sdOps, &rasInfo); if (rasInfo.rasBase) { LineUtils_ProcessLine(&rasInfo, pixel, pPrim->funcs.drawline, pPrim, &compInfo, x1, y1, x2, y2, 0); } SurfaceData_InvokeRelease(env, sdOps, &rasInfo); } SurfaceData_InvokeUnlock(env, sdOps, &rasInfo); } Other Java examples (source code examples)Here is a short list of links related to this Java DrawLine.c source code file: |
... this post is sponsored by my books ... | |
#1 New Release! |
FP Best Seller |
Copyright 1998-2024 Alvin Alexander, alvinalexander.com
All Rights Reserved.
A percentage of advertising revenue from
pages under the /java/jwarehouse
URI on this website is
paid back to open source projects.