alvinalexander.com | career | drupal | java | mac | mysql | perl | scala | uml | unix  

Java example source code file (DrawLine.c)

This example Java source code file (DrawLine.c) is included in the alvinalexander.com "Java Source Code Warehouse" project. The intent of this project is to help you "Learn Java by Example" TM.

Learn more about this Java project at its project page.

Java - Java tags/keywords

big_max, big_min, dxd, dyd, x1d, x2d, y1d, y2d

The DrawLine.c Java example source code

/*
 * Copyright (c) 2000, 2001, Oracle and/or its affiliates. All rights reserved.
 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
 *
 * This code is free software; you can redistribute it and/or modify it
 * under the terms of the GNU General Public License version 2 only, as
 * published by the Free Software Foundation.  Oracle designates this
 * particular file as subject to the "Classpath" exception as provided
 * by Oracle in the LICENSE file that accompanied this code.
 *
 * This code is distributed in the hope that it will be useful, but WITHOUT
 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
 * version 2 for more details (a copy is included in the LICENSE file that
 * accompanied this code).
 *
 * You should have received a copy of the GNU General Public License version
 * 2 along with this work; if not, write to the Free Software Foundation,
 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
 *
 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
 * or visit www.oracle.com if you need additional information or have any
 * questions.
 */

#include "GraphicsPrimitiveMgr.h"

#include "LineUtils.h"

#include "sun_java2d_loops_DrawLine.h"

#define OUTCODE_TOP     1
#define OUTCODE_BOTTOM  2
#define OUTCODE_LEFT    4
#define OUTCODE_RIGHT   8

static void
RefineBounds(SurfaceDataBounds *bounds, jint x1, jint y1, jint x2, jint y2)
{
    jint min, max;
    if (x1 < x2) {
        min = x1;
        max = x2;
    } else {
        min = x2;
        max = x1;
    }
    max++;
    if (max <= min) {
        /* integer overflow */
        max--;
    }
    if (bounds->x1 < min) bounds->x1 = min;
    if (bounds->x2 > max) bounds->x2 = max;
    if (y1 < y2) {
        min = y1;
        max = y2;
    } else {
        min = y2;
        max = y1;
    }
    max++;
    if (max <= min) {
        /* integer overflow */
        max--;
    }
    if (bounds->y1 < min) bounds->y1 = min;
    if (bounds->y2 > max) bounds->y2 = max;
}

#define _out(v, vmin, vmax, cmin, cmax) \
    ((v < vmin) ? cmin : ((v > vmax) ? cmax : 0))

#define outcode(x, y, xmin, ymin, xmax, ymax) \
    (_out(y, ymin, ymax, OUTCODE_TOP, OUTCODE_BOTTOM) | \
     _out(x, xmin, xmax, OUTCODE_LEFT, OUTCODE_RIGHT))

/*
 * "Small" math here will be done if the coordinates are less
 * than 15 bits in range (-16384 => 16383).  This could be
 * expanded to 16 bits if we rearrange some of the math in
 * the normal version of SetupBresenham.
 * "Big" math here will be done with coordinates with 30 bits
 * of total range - 2 bits less than a jint holds.
 * Intermediate calculations for "Big" coordinates will be
 * done using jlong variables.
 */
#define OverflowsSmall(v)       ((v) != (((v) << 17) >> 17))
#define OverflowsBig(v)         ((v) != (((v) << 2) >> 2))
#define BIG_MAX                 ((1 << 29) - 1)
#define BIG_MIN                 (-(1 << 29))

#define SETUP_BRESENHAM(CALC_TYPE, ORIGX1, ORIGY1, ORIGX2, ORIGY2, SHORTEN) \
do { \
    jint X1 = ORIGX1, Y1 = ORIGY1, X2 = ORIGX2, Y2 = ORIGY2; \
    jint dx, dy, ax, ay; \
    jint cxmin, cymin, cxmax, cymax; \
    jint outcode1, outcode2; \
    jboolean xmajor; \
    jint errminor, errmajor; \
    jint error; \
    jint steps; \
 \
    dx = X2 - X1; \
    dy = Y2 - Y1; \
    ax = (dx < 0) ? -dx : dx; \
    ay = (dy < 0) ? -dy : dy; \
 \
    cxmin = pBounds->x1; \
    cymin = pBounds->y1; \
    cxmax = pBounds->x2 - 1; \
    cymax = pBounds->y2 - 1; \
    xmajor = (ax >= ay); \
 \
    outcode1 = outcode(X1, Y1, cxmin, cymin, cxmax, cymax); \
    outcode2 = outcode(X2, Y2, cxmin, cymin, cxmax, cymax); \
    while ((outcode1 | outcode2) != 0) { \
        CALC_TYPE xsteps, ysteps; \
        if ((outcode1 & outcode2) != 0) { \
            return JNI_FALSE; \
        } \
        if (outcode1 != 0) { \
            if (outcode1 & (OUTCODE_TOP | OUTCODE_BOTTOM)) { \
                if (outcode1 & OUTCODE_TOP) { \
                    Y1 = cymin; \
                } else { \
                    Y1 = cymax; \
                } \
                ysteps = Y1 - ORIGY1; \
                if (ysteps < 0) { \
                    ysteps = -ysteps; \
                } \
                xsteps = 2 * ysteps * ax + ay; \
                if (xmajor) { \
                    xsteps += ay - ax - 1; \
                } \
                xsteps = xsteps / (2 * ay); \
                if (dx < 0) { \
                    xsteps = -xsteps; \
                } \
                X1 = ORIGX1 + (jint) xsteps; \
            } else if (outcode1 & (OUTCODE_LEFT | OUTCODE_RIGHT)) { \
                if (outcode1 & OUTCODE_LEFT) { \
                    X1 = cxmin; \
                } else { \
                    X1 = cxmax; \
                } \
                xsteps = X1 - ORIGX1; \
                if (xsteps < 0) { \
                    xsteps = -xsteps; \
                } \
                ysteps = 2 * xsteps * ay + ax; \
                if (!xmajor) { \
                    ysteps += ax - ay - 1; \
                } \
                ysteps = ysteps / (2 * ax); \
                if (dy < 0) { \
                    ysteps = -ysteps; \
                } \
                Y1 = ORIGY1 + (jint) ysteps; \
            } \
            outcode1 = outcode(X1, Y1, cxmin, cymin, cxmax, cymax); \
        } else { \
            if (outcode2 & (OUTCODE_TOP | OUTCODE_BOTTOM)) { \
                if (outcode2 & OUTCODE_TOP) { \
                    Y2 = cymin; \
                } else { \
                    Y2 = cymax; \
                } \
                ysteps = Y2 - ORIGY2; \
                if (ysteps < 0) { \
                    ysteps = -ysteps; \
                } \
                xsteps = 2 * ysteps * ax + ay; \
                if (xmajor) { \
                    xsteps += ay - ax; \
                } else { \
                    xsteps -= 1; \
                } \
                xsteps = xsteps / (2 * ay); \
                if (dx > 0) { \
                    xsteps = -xsteps; \
                } \
                X2 = ORIGX2 + (jint) xsteps; \
            } else if (outcode2 & (OUTCODE_LEFT | OUTCODE_RIGHT)) { \
                if (outcode2 & OUTCODE_LEFT) { \
                    X2 = cxmin; \
                } else { \
                    X2 = cxmax; \
                } \
                xsteps = X2 - ORIGX2; \
                if (xsteps < 0) { \
                    xsteps = -xsteps; \
                } \
                ysteps = 2 * xsteps * ay + ax; \
                if (xmajor) { \
                    ysteps -= 1; \
                } else { \
                    ysteps += ax - ay; \
                } \
                ysteps = ysteps / (2 * ax); \
                if (dy > 0) { \
                    ysteps = -ysteps; \
                } \
                Y2 = ORIGY2 + (jint) ysteps; \
            } \
            outcode2 = outcode(X2, Y2, cxmin, cymin, cxmax, cymax); \
        } \
    } \
    *pStartX = X1; \
    *pStartY = Y1; \
 \
    if (xmajor) { \
        errmajor = ay * 2; \
        errminor = ax * 2; \
        *pBumpMajorMask = (dx < 0) ? BUMP_NEG_PIXEL : BUMP_POS_PIXEL; \
        *pBumpMinorMask = (dy < 0) ? BUMP_NEG_SCAN : BUMP_POS_SCAN; \
        ax = -ax; /* For clipping adjustment below */ \
        steps = X2 - X1; \
        if (X2 != ORIGX2) { \
            SHORTEN = 0; \
        } \
    } else { \
        errmajor = ax * 2; \
        errminor = ay * 2; \
        *pBumpMajorMask = (dy < 0) ? BUMP_NEG_SCAN : BUMP_POS_SCAN; \
        *pBumpMinorMask = (dx < 0) ? BUMP_NEG_PIXEL : BUMP_POS_PIXEL; \
        ay = -ay; /* For clipping adjustment below */ \
        steps = Y2 - Y1; \
        if (Y2 != ORIGY2) { \
            SHORTEN = 0; \
        } \
    } \
    if ((steps = ((steps >= 0) ? steps : -steps) + 1 - SHORTEN) == 0) { \
        return JNI_FALSE; \
    } \
    error = - (errminor / 2); \
    if (Y1 != ORIGY1) { \
        jint ysteps = Y1 - ORIGY1; \
        if (ysteps < 0) { \
            ysteps = -ysteps; \
        } \
        error += ysteps * ax * 2; \
    } \
    if (X1 != ORIGX1) { \
        jint xsteps = X1 - ORIGX1; \
        if (xsteps < 0) { \
            xsteps = -xsteps; \
        } \
        error += xsteps * ay * 2; \
    } \
    error += errmajor; \
    errminor -= errmajor; \
 \
    *pSteps = steps; \
    *pError = error; \
    *pErrMajor = errmajor; \
    *pErrMinor = errminor; \
} while (0)

static jboolean
LineUtils_SetupBresenhamBig(jint _x1, jint _y1, jint _x2, jint _y2,
                            jint shorten,
                            SurfaceDataBounds *pBounds,
                            jint *pStartX, jint *pStartY,
                            jint *pSteps, jint *pError,
                            jint *pErrMajor, jint *pBumpMajorMask,
                            jint *pErrMinor, jint *pBumpMinorMask)
{
    /*
     * Part of calculating the Bresenham parameters for line stepping
     * involves being able to store numbers that are twice the magnitude
     * of the biggest absolute difference in coordinates.  Since we
     * want the stepping parameters to be stored in jints, we then need
     * to avoid any absolute differences more than 30 bits.  Thus, we
     * need to preprocess the coordinates to reduce their range to 30
     * bits regardless of clipping.  We need to cut their range back
     * before we do the clipping because the Bresenham stepping values
     * need to be calculated based on the "unclipped" coordinates.
     *
     * Thus, first we perform a "pre-clipping" stage to bring the
     * coordinates within the 30-bit range and then we proceed to the
     * regular clipping procedure, pretending that these were the
     * original coordinates all along.  Since this operation occurs
     * based on a constant "pre-clip" rectangle of +/- 30 bits without
     * any consideration for the final clip, the rounding errors that
     * occur here will depend only on the line coordinates and be
     * invariant with respect to the particular device/user clip
     * rectangles in effect at the time.  Thus, rendering a given
     * large-range line will be consistent under a variety of
     * clipping conditions.
     */
    if (OverflowsBig(_x1) || OverflowsBig(_y1) ||
        OverflowsBig(_x2) || OverflowsBig(_y2))
    {
        /*
         * Use doubles to get us into range for "Big" arithmetic.
         *
         * The math of adjusting an endpoint for clipping can involve
         * an intermediate result with twice the number of bits as the
         * original coordinate range.  Since we want to maintain as
         * much as 30 bits of precision in the resulting coordinates,
         * we will get roundoff here even using IEEE double-precision
         * arithmetic which cannot carry 60 bits of mantissa.  Since
         * the rounding errors will be consistent for a given set
         * of input coordinates the potential roundoff error should
         * not affect the consistency of our rendering.
         */
        double X1d = _x1;
        double Y1d = _y1;
        double X2d = _x2;
        double Y2d = _y2;
        double DXd = X2d - X1d;
        double DYd = Y2d - Y1d;
        if (_x1 < BIG_MIN) {
            Y1d = _y1 + (BIG_MIN - _x1) * DYd / DXd;
            X1d = BIG_MIN;
        } else if (_x1 > BIG_MAX) {
            Y1d = _y1 - (_x1 - BIG_MAX) * DYd / DXd;
            X1d = BIG_MAX;
        }
        /* Use Y1d instead of _y1 for testing now as we may have modified it */
        if (Y1d < BIG_MIN) {
            X1d = _x1 + (BIG_MIN - _y1) * DXd / DYd;
            Y1d = BIG_MIN;
        } else if (Y1d > BIG_MAX) {
            X1d = _x1 - (_y1 - BIG_MAX) * DXd / DYd;
            Y1d = BIG_MAX;
        }
        if (_x2 < BIG_MIN) {
            Y2d = _y2 + (BIG_MIN - _x2) * DYd / DXd;
            X2d = BIG_MIN;
        } else if (_x2 > BIG_MAX) {
            Y2d = _y2 - (_x2 - BIG_MAX) * DYd / DXd;
            X2d = BIG_MAX;
        }
        /* Use Y2d instead of _y2 for testing now as we may have modified it */
        if (Y2d < BIG_MIN) {
            X2d = _x2 + (BIG_MIN - _y2) * DXd / DYd;
            Y2d = BIG_MIN;
        } else if (Y2d > BIG_MAX) {
            X2d = _x2 - (_y2 - BIG_MAX) * DXd / DYd;
            Y2d = BIG_MAX;
        }
        _x1 = (int) X1d;
        _y1 = (int) Y1d;
        _x2 = (int) X2d;
        _y2 = (int) Y2d;
    }

    SETUP_BRESENHAM(jlong, _x1, _y1, _x2, _y2, shorten);

    return JNI_TRUE;
}

jboolean
LineUtils_SetupBresenham(jint _x1, jint _y1, jint _x2, jint _y2,
                         jint shorten,
                         SurfaceDataBounds *pBounds,
                         jint *pStartX, jint *pStartY,
                         jint *pSteps, jint *pError,
                         jint *pErrMajor, jint *pBumpMajorMask,
                         jint *pErrMinor, jint *pBumpMinorMask)
{
    if (OverflowsSmall(_x1) || OverflowsSmall(_y1) ||
        OverflowsSmall(_x2) || OverflowsSmall(_y2))
    {
        return LineUtils_SetupBresenhamBig(_x1, _y1, _x2, _y2, shorten,
                                           pBounds,
                                           pStartX, pStartY,
                                           pSteps, pError,
                                           pErrMajor, pBumpMajorMask,
                                           pErrMinor, pBumpMinorMask);
    }

    SETUP_BRESENHAM(jint, _x1, _y1, _x2, _y2, shorten);

    return JNI_TRUE;
}

/*
 * Class:     sun_java2d_loops_DrawLine
 * Method:    DrawLine
 * Signature: (Lsun/java2d/SunGraphics2D;Lsun/java2d/SurfaceData;IIII)V
 */
JNIEXPORT void JNICALL
Java_sun_java2d_loops_DrawLine_DrawLine
    (JNIEnv *env, jobject self,
     jobject sg2d, jobject sData,
     jint x1, jint y1, jint x2, jint y2)
{
    SurfaceDataOps *sdOps;
    SurfaceDataRasInfo rasInfo;
    NativePrimitive *pPrim;
    CompositeInfo compInfo;
    jint pixel = GrPrim_Sg2dGetPixel(env, sg2d);

    pPrim = GetNativePrim(env, self);
    if (pPrim == NULL) {
        return;
    }
    if (pPrim->pCompType->getCompInfo != NULL) {
        GrPrim_Sg2dGetCompInfo(env, sg2d, pPrim, &compInfo);
    }

    sdOps = SurfaceData_GetOps(env, sData);
    if (sdOps == 0) {
        return;
    }

    GrPrim_Sg2dGetClip(env, sg2d, &rasInfo.bounds);

    RefineBounds(&rasInfo.bounds, x1, y1, x2, y2);

    if (sdOps->Lock(env, sdOps, &rasInfo, pPrim->dstflags) != SD_SUCCESS) {
        return;
    }

    if (rasInfo.bounds.x2 > rasInfo.bounds.x1 &&
        rasInfo.bounds.y2 > rasInfo.bounds.y1)
    {
        sdOps->GetRasInfo(env, sdOps, &rasInfo);
        if (rasInfo.rasBase) {
            LineUtils_ProcessLine(&rasInfo, pixel,
                                  pPrim->funcs.drawline, pPrim, &compInfo,
                                  x1, y1, x2, y2, 0);
        }
        SurfaceData_InvokeRelease(env, sdOps, &rasInfo);
    }
    SurfaceData_InvokeUnlock(env, sdOps, &rasInfo);
}

Other Java examples (source code examples)

Here is a short list of links related to this Java DrawLine.c source code file:

... this post is sponsored by my books ...

#1 New Release!

FP Best Seller

 

new blog posts

 

Copyright 1998-2021 Alvin Alexander, alvinalexander.com
All Rights Reserved.

A percentage of advertising revenue from
pages under the /java/jwarehouse URI on this website is
paid back to open source projects.