|
Java example source code file (OGLPaints.c)
The OGLPaints.c Java example source code/* * Copyright (c) 2007, Oracle and/or its affiliates. All rights reserved. * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. * * This code is free software; you can redistribute it and/or modify it * under the terms of the GNU General Public License version 2 only, as * published by the Free Software Foundation. Oracle designates this * particular file as subject to the "Classpath" exception as provided * by Oracle in the LICENSE file that accompanied this code. * * This code is distributed in the hope that it will be useful, but WITHOUT * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License * version 2 for more details (a copy is included in the LICENSE file that * accompanied this code). * * You should have received a copy of the GNU General Public License version * 2 along with this work; if not, write to the Free Software Foundation, * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. * * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA * or visit www.oracle.com if you need additional information or have any * questions. */ #ifndef HEADLESS #include <jlong.h> #include <string.h> #include "sun_java2d_SunGraphics2D.h" #include "sun_java2d_pipe_BufferedPaints.h" #include "OGLPaints.h" #include "OGLContext.h" #include "OGLRenderQueue.h" #include "OGLSurfaceData.h" void OGLPaints_ResetPaint(OGLContext *oglc) { jubyte ea; J2dTraceLn(J2D_TRACE_INFO, "OGLPaints_ResetPaint"); RETURN_IF_NULL(oglc); J2dTraceLn1(J2D_TRACE_VERBOSE, " state=%d", oglc->paintState); RESET_PREVIOUS_OP(); if (oglc->useMask) { // switch to texture unit 1, where paint state is currently enabled j2d_glActiveTextureARB(GL_TEXTURE1_ARB); } switch (oglc->paintState) { case sun_java2d_SunGraphics2D_PAINT_GRADIENT: j2d_glDisable(GL_TEXTURE_1D); j2d_glDisable(GL_TEXTURE_GEN_S); break; case sun_java2d_SunGraphics2D_PAINT_TEXTURE: // Note: The texture object used in SetTexturePaint() will // still be bound at this point, so it is safe to call the following. OGLSD_RESET_TEXTURE_WRAP(GL_TEXTURE_2D); j2d_glDisable(GL_TEXTURE_2D); j2d_glDisable(GL_TEXTURE_GEN_S); j2d_glDisable(GL_TEXTURE_GEN_T); break; case sun_java2d_SunGraphics2D_PAINT_LIN_GRADIENT: case sun_java2d_SunGraphics2D_PAINT_RAD_GRADIENT: j2d_glUseProgramObjectARB(0); j2d_glDisable(GL_TEXTURE_1D); break; case sun_java2d_SunGraphics2D_PAINT_ALPHACOLOR: default: break; } if (oglc->useMask) { // restore control to texture unit 0 j2d_glActiveTextureARB(GL_TEXTURE0_ARB); } // set each component of the current color state to the extra alpha // value, which will effectively apply the extra alpha to each fragment // in paint/texturing operations ea = (jubyte)(oglc->extraAlpha * 0xff + 0.5f); j2d_glColor4ub(ea, ea, ea, ea); oglc->pixel = (ea << 24) | (ea << 16) | (ea << 8) | (ea << 0); oglc->r = ea; oglc->g = ea; oglc->b = ea; oglc->a = ea; oglc->useMask = JNI_FALSE; oglc->paintState = -1; } void OGLPaints_SetColor(OGLContext *oglc, jint pixel) { jubyte r, g, b, a; J2dTraceLn1(J2D_TRACE_INFO, "OGLPaints_SetColor: pixel=%08x", pixel); RETURN_IF_NULL(oglc); // glColor*() is allowed within glBegin()/glEnd() pairs, so // no need to reset the current op state here unless the paint // state really needs to be changed if (oglc->paintState > sun_java2d_SunGraphics2D_PAINT_ALPHACOLOR) { OGLPaints_ResetPaint(oglc); } // store the raw (unmodified) pixel value, which may be used for // special operations later oglc->pixel = pixel; if (oglc->compState != sun_java2d_SunGraphics2D_COMP_XOR) { r = (jubyte)(pixel >> 16); g = (jubyte)(pixel >> 8); b = (jubyte)(pixel >> 0); a = (jubyte)(pixel >> 24); J2dTraceLn4(J2D_TRACE_VERBOSE, " updating color: r=%02x g=%02x b=%02x a=%02x", r, g, b, a); } else { pixel ^= oglc->xorPixel; r = (jubyte)(pixel >> 16); g = (jubyte)(pixel >> 8); b = (jubyte)(pixel >> 0); a = 0xff; J2dTraceLn4(J2D_TRACE_VERBOSE, " updating xor color: r=%02x g=%02x b=%02x xorpixel=%08x", r, g, b, oglc->xorPixel); } j2d_glColor4ub(r, g, b, a); oglc->r = r; oglc->g = g; oglc->b = b; oglc->a = a; oglc->useMask = JNI_FALSE; oglc->paintState = sun_java2d_SunGraphics2D_PAINT_ALPHACOLOR; } /************************* GradientPaint support ****************************/ static GLuint gradientTexID = 0; static void OGLPaints_InitGradientTexture() { GLclampf priority = 1.0f; J2dTraceLn(J2D_TRACE_INFO, "OGLPaints_InitGradientTexture"); j2d_glGenTextures(1, &gradientTexID); j2d_glBindTexture(GL_TEXTURE_1D, gradientTexID); j2d_glPrioritizeTextures(1, &gradientTexID, &priority); j2d_glTexParameteri(GL_TEXTURE_1D, GL_TEXTURE_MAG_FILTER, GL_LINEAR); j2d_glTexParameteri(GL_TEXTURE_1D, GL_TEXTURE_MIN_FILTER, GL_LINEAR); j2d_glTexImage1D(GL_TEXTURE_1D, 0, GL_RGBA8, 2, 0, GL_BGRA, GL_UNSIGNED_INT_8_8_8_8_REV, NULL); } void OGLPaints_SetGradientPaint(OGLContext *oglc, jboolean useMask, jboolean cyclic, jdouble p0, jdouble p1, jdouble p3, jint pixel1, jint pixel2) { GLdouble texParams[4]; GLuint pixels[2]; J2dTraceLn(J2D_TRACE_INFO, "OGLPaints_SetGradientPaint"); RETURN_IF_NULL(oglc); OGLPaints_ResetPaint(oglc); texParams[0] = p0; texParams[1] = p1; texParams[2] = 0.0; texParams[3] = p3; pixels[0] = pixel1; pixels[1] = pixel2; if (useMask) { // set up the paint on texture unit 1 (instead of the usual unit 0) j2d_glActiveTextureARB(GL_TEXTURE1_ARB); j2d_glTexEnvi(GL_TEXTURE_ENV, GL_TEXTURE_ENV_MODE, GL_MODULATE); } else { // texture unit 0 is already active; we can use the helper macro here OGLC_UPDATE_TEXTURE_FUNCTION(oglc, GL_MODULATE); } if (gradientTexID == 0) { OGLPaints_InitGradientTexture(); } j2d_glEnable(GL_TEXTURE_1D); j2d_glEnable(GL_TEXTURE_GEN_S); j2d_glBindTexture(GL_TEXTURE_1D, gradientTexID); j2d_glTexParameteri(GL_TEXTURE_1D, GL_TEXTURE_WRAP_S, cyclic ? GL_REPEAT : GL_CLAMP_TO_EDGE); j2d_glTexGeni(GL_S, GL_TEXTURE_GEN_MODE, GL_OBJECT_LINEAR); j2d_glTexGendv(GL_S, GL_OBJECT_PLANE, texParams); j2d_glTexSubImage1D(GL_TEXTURE_1D, 0, 0, 2, GL_BGRA, GL_UNSIGNED_INT_8_8_8_8_REV, pixels); if (useMask) { // restore control to texture unit 0 j2d_glActiveTextureARB(GL_TEXTURE0_ARB); } // oglc->pixel has been set appropriately in OGLPaints_ResetPaint() oglc->useMask = useMask; oglc->paintState = sun_java2d_SunGraphics2D_PAINT_GRADIENT; } /************************** TexturePaint support ****************************/ void OGLPaints_SetTexturePaint(OGLContext *oglc, jboolean useMask, jlong pSrcOps, jboolean filter, jdouble xp0, jdouble xp1, jdouble xp3, jdouble yp0, jdouble yp1, jdouble yp3) { OGLSDOps *srcOps = (OGLSDOps *)jlong_to_ptr(pSrcOps); GLdouble xParams[4]; GLdouble yParams[4]; GLint hint = (filter ? GL_LINEAR : GL_NEAREST); J2dTraceLn(J2D_TRACE_INFO, "OGLPaints_SetTexturePaint"); RETURN_IF_NULL(srcOps); RETURN_IF_NULL(oglc); OGLPaints_ResetPaint(oglc); xParams[0] = xp0; xParams[1] = xp1; xParams[2] = 0.0; xParams[3] = xp3; yParams[0] = yp0; yParams[1] = yp1; yParams[2] = 0.0; yParams[3] = yp3; /* * Note that we explicitly use GL_TEXTURE_2D below rather than using * srcOps->textureTarget. This is because the texture wrap mode employed * here (GL_REPEAT) is not available for GL_TEXTURE_RECTANGLE_ARB targets. * The setup code in OGLPaints.Texture.isPaintValid() and in * OGLSurfaceData.initTexture() ensures that we only get here for * GL_TEXTURE_2D targets. */ if (useMask) { // set up the paint on texture unit 1 (instead of the usual unit 0) j2d_glActiveTextureARB(GL_TEXTURE1_ARB); j2d_glTexEnvi(GL_TEXTURE_ENV, GL_TEXTURE_ENV_MODE, GL_MODULATE); } else { // texture unit 0 is already active; we can use the helper macro here OGLC_UPDATE_TEXTURE_FUNCTION(oglc, GL_MODULATE); } j2d_glEnable(GL_TEXTURE_2D); j2d_glEnable(GL_TEXTURE_GEN_S); j2d_glEnable(GL_TEXTURE_GEN_T); j2d_glBindTexture(GL_TEXTURE_2D, srcOps->textureID); OGLSD_UPDATE_TEXTURE_FILTER(srcOps, hint); OGLSD_UPDATE_TEXTURE_WRAP(GL_TEXTURE_2D, GL_REPEAT); j2d_glTexGeni(GL_S, GL_TEXTURE_GEN_MODE, GL_OBJECT_LINEAR); j2d_glTexGendv(GL_S, GL_OBJECT_PLANE, xParams); j2d_glTexGeni(GL_T, GL_TEXTURE_GEN_MODE, GL_OBJECT_LINEAR); j2d_glTexGendv(GL_T, GL_OBJECT_PLANE, yParams); if (useMask) { // restore control to texture unit 0 j2d_glActiveTextureARB(GL_TEXTURE0_ARB); } // oglc->pixel has been set appropriately in OGLPaints_ResetPaint() oglc->useMask = useMask; oglc->paintState = sun_java2d_SunGraphics2D_PAINT_TEXTURE; } /****************** Shared MultipleGradientPaint support ********************/ /** * These constants are identical to those defined in the * MultipleGradientPaint.CycleMethod enum; they are copied here for * convenience (ideally we would pull them directly from the Java level, * but that entails more hassle than it is worth). */ #define CYCLE_NONE 0 #define CYCLE_REFLECT 1 #define CYCLE_REPEAT 2 /** * The following constants are flags that can be bitwise-or'ed together * to control how the MultipleGradientPaint shader source code is generated: * * MULTI_CYCLE_METHOD * Placeholder for the CycleMethod enum constant. * * MULTI_LARGE * If set, use the (slower) shader that supports a larger number of * gradient colors; otherwise, use the optimized codepath. See * the MAX_FRACTIONS_SMALL/LARGE constants below for more details. * * MULTI_USE_MASK * If set, apply the alpha mask value from texture unit 0 to the * final color result (only used in the MaskFill case). * * MULTI_LINEAR_RGB * If set, convert the linear RGB result back into the sRGB color space. */ #define MULTI_CYCLE_METHOD (3 << 0) #define MULTI_LARGE (1 << 2) #define MULTI_USE_MASK (1 << 3) #define MULTI_LINEAR_RGB (1 << 4) /** * This value determines the size of the array of programs for each * MultipleGradientPaint type. This value reflects the maximum value that * can be represented by performing a bitwise-or of all the MULTI_* * constants defined above. */ #define MAX_PROGRAMS 32 /** Evaluates to true if the given bit is set on the local flags variable. */ #define IS_SET(flagbit) \ (((flags) & (flagbit)) != 0) /** Composes the given parameters as flags into the given flags variable.*/ #define COMPOSE_FLAGS(flags, cycleMethod, large, useMask, linear) \ do { \ flags |= ((cycleMethod) & MULTI_CYCLE_METHOD); \ if (large) flags |= MULTI_LARGE; \ if (useMask) flags |= MULTI_USE_MASK; \ if (linear) flags |= MULTI_LINEAR_RGB; \ } while (0) /** Extracts the CycleMethod enum value from the given flags variable. */ #define EXTRACT_CYCLE_METHOD(flags) \ ((flags) & MULTI_CYCLE_METHOD) /** * The maximum number of gradient "stops" supported by the fragment shader * and related code. When the MULTI_LARGE flag is set, we will use * MAX_FRACTIONS_LARGE; otherwise, we use MAX_FRACTIONS_SMALL. By having * two separate values, we can have one highly optimized shader (SMALL) that * supports only a few fractions/colors, and then another, less optimal * shader that supports more stops. */ #define MAX_FRACTIONS sun_java2d_pipe_BufferedPaints_MULTI_MAX_FRACTIONS #define MAX_FRACTIONS_LARGE MAX_FRACTIONS #define MAX_FRACTIONS_SMALL 4 /** * The maximum number of gradient colors supported by all of the gradient * fragment shaders. Note that this value must be a power of two, as it * determines the size of the 1D texture created below. It also must be * greater than or equal to MAX_FRACTIONS (there is no strict requirement * that the two values be equal). */ #define MAX_COLORS 16 /** * The handle to the gradient color table texture object used by the shaders. */ static GLuint multiGradientTexID = 0; /** * This is essentially a template of the shader source code that can be used * for either LinearGradientPaint or RadialGradientPaint. It includes the * structure and some variables that are common to each; the remaining * code snippets (for CycleMethod, ColorSpaceType, and mask modulation) * are filled in prior to compiling the shader at runtime depending on the * paint parameters. See OGLPaints_CreateMultiGradProgram() for more details. */ static const char *multiGradientShaderSource = // gradient texture size (in texels) "const int TEXTURE_SIZE = %d;" // maximum number of fractions/colors supported by this shader "const int MAX_FRACTIONS = %d;" // size of a single texel "const float FULL_TEXEL = (1.0 / float(TEXTURE_SIZE));" // size of half of a single texel "const float HALF_TEXEL = (FULL_TEXEL / 2.0);" // texture containing the gradient colors "uniform sampler1D colors;" // array of gradient stops/fractions "uniform float fractions[MAX_FRACTIONS];" // array of scale factors (one for each interval) "uniform float scaleFactors[MAX_FRACTIONS-1];" // (placeholder for mask variable) "%s" // (placeholder for Linear/RadialGP-specific variables) "%s" "" "void main(void)" "{" " float dist;" // (placeholder for Linear/RadialGradientPaint-specific code) " %s" "" " float tc;" // (placeholder for CycleMethod-specific code) " %s" "" // calculate interpolated color " vec4 result = texture1D(colors, tc);" "" // (placeholder for ColorSpace conversion code) " %s" "" // (placeholder for mask modulation code) " %s" "" // modulate with gl_Color in order to apply extra alpha " gl_FragColor = result * gl_Color;" "}"; /** * This code takes a "dist" value as input (as calculated earlier by the * LGP/RGP-specific code) in the range [0,1] and produces a texture * coordinate value "tc" that represents the position of the chosen color * in the one-dimensional gradient texture (also in the range [0,1]). * * One naive way to implement this would be to iterate through the fractions * to figure out in which interval "dist" falls, and then compute the * relative distance between the two nearest stops. This approach would * require an "if" check on every iteration, and it is best to avoid * conditionals in fragment shaders for performance reasons. Also, one might * be tempted to use a break statement to jump out of the loop once the * interval was found, but break statements (and non-constant loop bounds) * are not natively available on most graphics hardware today, so that is * a non-starter. * * The more optimal approach used here avoids these issues entirely by using * an accumulation function that is equivalent to the process described above. * The scaleFactors array is pre-initialized at enable time as follows: * scaleFactors[i] = 1.0 / (fractions[i+1] - fractions[i]); * * For each iteration, we subtract fractions[i] from dist and then multiply * that value by scaleFactors[i]. If we are within the target interval, * this value will be a fraction in the range [0,1] indicating the relative * distance between fraction[i] and fraction[i+1]. If we are below the * target interval, this value will be negative, so we clamp it to zero * to avoid accumulating any value. If we are above the target interval, * the value will be greater than one, so we clamp it to one. Upon exiting * the loop, we will have accumulated zero or more 1.0's and a single * fractional value. This accumulated value tells us the position of the * fragment color in the one-dimensional gradient texture, i.e., the * texcoord called "tc". */ static const char *texCoordCalcCode = "int i;" "float relFraction = 0.0;" "for (i = 0; i < MAX_FRACTIONS-1; i++) {" " relFraction +=" " clamp((dist - fractions[i]) * scaleFactors[i], 0.0, 1.0);" "}" // we offset by half a texel so that we find the linearly interpolated // color between the two texel centers of interest "tc = HALF_TEXEL + (FULL_TEXEL * relFraction);"; /** Code for NO_CYCLE that gets plugged into the CycleMethod placeholder. */ static const char *noCycleCode = "if (dist <= 0.0) {" " tc = 0.0;" "} else if (dist >= 1.0) {" " tc = 1.0;" "} else {" // (placeholder for texcoord calculation) " %s" "}"; /** Code for REFLECT that gets plugged into the CycleMethod placeholder. */ static const char *reflectCode = "dist = 1.0 - (abs(fract(dist * 0.5) - 0.5) * 2.0);" // (placeholder for texcoord calculation) "%s"; /** Code for REPEAT that gets plugged into the CycleMethod placeholder. */ static const char *repeatCode = "dist = fract(dist);" // (placeholder for texcoord calculation) "%s"; static void OGLPaints_InitMultiGradientTexture() { GLclampf priority = 1.0f; J2dTraceLn(J2D_TRACE_INFO, "OGLPaints_InitMultiGradientTexture"); j2d_glGenTextures(1, &multiGradientTexID); j2d_glBindTexture(GL_TEXTURE_1D, multiGradientTexID); j2d_glPrioritizeTextures(1, &multiGradientTexID, &priority); j2d_glTexParameteri(GL_TEXTURE_1D, GL_TEXTURE_MAG_FILTER, GL_LINEAR); j2d_glTexParameteri(GL_TEXTURE_1D, GL_TEXTURE_MIN_FILTER, GL_LINEAR); j2d_glTexParameteri(GL_TEXTURE_1D, GL_TEXTURE_WRAP_S, GL_CLAMP_TO_EDGE); j2d_glTexImage1D(GL_TEXTURE_1D, 0, GL_RGBA8, MAX_COLORS, 0, GL_BGRA, GL_UNSIGNED_INT_8_8_8_8_REV, NULL); } /** * Compiles and links the MultipleGradientPaint shader program. If * successful, this function returns a handle to the newly created * shader program; otherwise returns 0. */ static GLhandleARB OGLPaints_CreateMultiGradProgram(jint flags, char *paintVars, char *distCode) { GLhandleARB multiGradProgram; GLint loc; char *maskVars = ""; char *maskCode = ""; char *colorSpaceCode = ""; char cycleCode[1500]; char finalSource[3000]; jint cycleMethod = EXTRACT_CYCLE_METHOD(flags); jint maxFractions = IS_SET(MULTI_LARGE) ? MAX_FRACTIONS_LARGE : MAX_FRACTIONS_SMALL; J2dTraceLn(J2D_TRACE_INFO, "OGLPaints_CreateMultiGradProgram"); if (IS_SET(MULTI_USE_MASK)) { /* * This code modulates the calculated result color with the * corresponding alpha value from the alpha mask texture active * on texture unit 0. Only needed when useMask is true (i.e., only * for MaskFill operations). */ maskVars = "uniform sampler2D mask;"; maskCode = "result *= texture2D(mask, gl_TexCoord[0].st);"; } else { /* * REMIND: This is really wacky, but the gradient shaders will * produce completely incorrect results on ATI hardware (at least * on first-gen (R300-based) boards) if the shader program does not * try to access texture coordinates by using a gl_TexCoord[*] * variable. This problem really should be addressed by ATI, but * in the meantime it seems we can workaround the issue by inserting * a benign operation that accesses gl_TexCoord[0]. Note that we * only need to do this for ATI boards and only in the !useMask case, * because the useMask case already does access gl_TexCoord[1] and * is therefore not affected by this driver bug. */ const char *vendor = (const char *)j2d_glGetString(GL_VENDOR); if (vendor != NULL && strncmp(vendor, "ATI", 3) == 0) { maskCode = "dist = gl_TexCoord[0].s;"; } } if (IS_SET(MULTI_LINEAR_RGB)) { /* * This code converts a single pixel in linear RGB space back * into sRGB (note: this code was adapted from the * MultipleGradientPaintContext.convertLinearRGBtoSRGB() method). */ colorSpaceCode = "result.rgb = 1.055 * pow(result.rgb, vec3(0.416667)) - 0.055;"; } if (cycleMethod == CYCLE_NONE) { sprintf(cycleCode, noCycleCode, texCoordCalcCode); } else if (cycleMethod == CYCLE_REFLECT) { sprintf(cycleCode, reflectCode, texCoordCalcCode); } else { // (cycleMethod == CYCLE_REPEAT) sprintf(cycleCode, repeatCode, texCoordCalcCode); } // compose the final source code string from the various pieces sprintf(finalSource, multiGradientShaderSource, MAX_COLORS, maxFractions, maskVars, paintVars, distCode, cycleCode, colorSpaceCode, maskCode); multiGradProgram = OGLContext_CreateFragmentProgram(finalSource); if (multiGradProgram == 0) { J2dRlsTraceLn(J2D_TRACE_ERROR, "OGLPaints_CreateMultiGradProgram: error creating program"); return 0; } // "use" the program object temporarily so that we can set the uniforms j2d_glUseProgramObjectARB(multiGradProgram); // set the "uniform" texture unit bindings if (IS_SET(MULTI_USE_MASK)) { loc = j2d_glGetUniformLocationARB(multiGradProgram, "mask"); j2d_glUniform1iARB(loc, 0); // texture unit 0 loc = j2d_glGetUniformLocationARB(multiGradProgram, "colors"); j2d_glUniform1iARB(loc, 1); // texture unit 1 } else { loc = j2d_glGetUniformLocationARB(multiGradProgram, "colors"); j2d_glUniform1iARB(loc, 0); // texture unit 0 } // "unuse" the program object; it will be re-bound later as needed j2d_glUseProgramObjectARB(0); if (multiGradientTexID == 0) { OGLPaints_InitMultiGradientTexture(); } return multiGradProgram; } /** * Called from the OGLPaints_SetLinear/RadialGradientPaint() methods * in order to setup the fraction/color values that are common to both. */ static void OGLPaints_SetMultiGradientPaint(GLhandleARB multiGradProgram, jint numStops, void *pFractions, void *pPixels) { jint maxFractions = (numStops > MAX_FRACTIONS_SMALL) ? MAX_FRACTIONS_LARGE : MAX_FRACTIONS_SMALL; GLfloat scaleFactors[MAX_FRACTIONS-1]; GLfloat *fractions = (GLfloat *)pFractions; GLint *pixels = (GLint *)pPixels; GLint loc; int i; // enable the MultipleGradientPaint shader j2d_glUseProgramObjectARB(multiGradProgram); // update the "uniform" fraction values loc = j2d_glGetUniformLocationARB(multiGradProgram, "fractions"); if (numStops < maxFractions) { // fill the remainder of the fractions array with all zeros to // prevent using garbage values from previous paints GLfloat allZeros[MAX_FRACTIONS]; memset(allZeros, 0, sizeof(GLfloat)*MAX_FRACTIONS); j2d_glUniform1fvARB(loc, maxFractions, allZeros); } j2d_glUniform1fvARB(loc, numStops, fractions); // update the "uniform" scale values loc = j2d_glGetUniformLocationARB(multiGradProgram, "scaleFactors"); for (i = 0; i < numStops-1; i++) { // calculate a scale factor for each interval scaleFactors[i] = 1.0f / (fractions[i+1] - fractions[i]); } for (; i < maxFractions-1; i++) { // fill remaining scale factors with zero scaleFactors[i] = 0.0f; } j2d_glUniform1fvARB(loc, maxFractions-1, scaleFactors); // update the texture containing the gradient colors j2d_glEnable(GL_TEXTURE_1D); j2d_glBindTexture(GL_TEXTURE_1D, multiGradientTexID); j2d_glTexSubImage1D(GL_TEXTURE_1D, 0, 0, numStops, GL_BGRA, GL_UNSIGNED_INT_8_8_8_8_REV, pixels); if (numStops < MAX_COLORS) { // when we don't have enough colors to fill the entire color gradient, // we have to replicate the last color in the right-most texel for // the NO_CYCLE case where the texcoord is sometimes forced to 1.0 j2d_glTexSubImage1D(GL_TEXTURE_1D, 0, MAX_COLORS-1, 1, GL_BGRA, GL_UNSIGNED_INT_8_8_8_8_REV, pixels+(numStops-1)); } } /********************** LinearGradientPaint support *************************/ /** * The handles to the LinearGradientPaint fragment program objects. The * index to the array should be a bitwise-or'ing of the MULTI_* flags defined * above. Note that most applications will likely need to initialize one * or two of these elements, so the array is usually sparsely populated. */ static GLhandleARB linearGradPrograms[MAX_PROGRAMS]; /** * Compiles and links the LinearGradientPaint shader program. If successful, * this function returns a handle to the newly created shader program; * otherwise returns 0. */ static GLhandleARB OGLPaints_CreateLinearGradProgram(jint flags) { char *paintVars; char *distCode; J2dTraceLn1(J2D_TRACE_INFO, "OGLPaints_CreateLinearGradProgram", flags); /* * To simplify the code and to make it easier to upload a number of * uniform values at once, we pack a bunch of scalar (float) values * into vec3 values below. Here's how the values are related: * * params.x = p0 * params.y = p1 * params.z = p3 * * yoff = dstOps->yOffset + dstOps->height */ paintVars = "uniform vec3 params;" "uniform float yoff;"; distCode = // note that gl_FragCoord is in window space relative to the // lower-left corner, so we have to flip the y-coordinate here "vec3 fragCoord = vec3(gl_FragCoord.x, yoff-gl_FragCoord.y, 1.0);" "dist = dot(params, fragCoord);"; return OGLPaints_CreateMultiGradProgram(flags, paintVars, distCode); } void OGLPaints_SetLinearGradientPaint(OGLContext *oglc, OGLSDOps *dstOps, jboolean useMask, jboolean linear, jint cycleMethod, jint numStops, jfloat p0, jfloat p1, jfloat p3, void *fractions, void *pixels) { GLhandleARB linearGradProgram; GLint loc; jboolean large = (numStops > MAX_FRACTIONS_SMALL); jint flags = 0; J2dTraceLn(J2D_TRACE_INFO, "OGLPaints_SetLinearGradientPaint"); RETURN_IF_NULL(oglc); RETURN_IF_NULL(dstOps); OGLPaints_ResetPaint(oglc); COMPOSE_FLAGS(flags, cycleMethod, large, useMask, linear); if (useMask) { // set up the paint on texture unit 1 (instead of the usual unit 0) j2d_glActiveTextureARB(GL_TEXTURE1_ARB); } // no need to set GL_MODULATE here (it is ignored when shader is enabled) // locate/initialize the shader program for the given flags if (linearGradPrograms[flags] == 0) { linearGradPrograms[flags] = OGLPaints_CreateLinearGradProgram(flags); if (linearGradPrograms[flags] == 0) { // shouldn't happen, but just in case... return; } } linearGradProgram = linearGradPrograms[flags]; // update the common "uniform" values (fractions and colors) OGLPaints_SetMultiGradientPaint(linearGradProgram, numStops, fractions, pixels); // update the other "uniform" values loc = j2d_glGetUniformLocationARB(linearGradProgram, "params"); j2d_glUniform3fARB(loc, p0, p1, p3); loc = j2d_glGetUniformLocationARB(linearGradProgram, "yoff"); j2d_glUniform1fARB(loc, (GLfloat)(dstOps->yOffset + dstOps->height)); if (useMask) { // restore control to texture unit 0 j2d_glActiveTextureARB(GL_TEXTURE0_ARB); } // oglc->pixel has been set appropriately in OGLPaints_ResetPaint() oglc->useMask = useMask; oglc->paintState = sun_java2d_SunGraphics2D_PAINT_LIN_GRADIENT; } /********************** RadialGradientPaint support *************************/ /** * The handles to the RadialGradientPaint fragment program objects. The * index to the array should be a bitwise-or'ing of the MULTI_* flags defined * above. Note that most applications will likely need to initialize one * or two of these elements, so the array is usually sparsely populated. */ static GLhandleARB radialGradPrograms[MAX_PROGRAMS]; /** * Compiles and links the RadialGradientPaint shader program. If successful, * this function returns a handle to the newly created shader program; * otherwise returns 0. */ static GLhandleARB OGLPaints_CreateRadialGradProgram(jint flags) { char *paintVars; char *distCode; J2dTraceLn1(J2D_TRACE_INFO, "OGLPaints_CreateRadialGradProgram", flags); /* * To simplify the code and to make it easier to upload a number of * uniform values at once, we pack a bunch of scalar (float) values * into vec3 and vec4 values below. Here's how the values are related: * * m0.x = m00 * m0.y = m01 * m0.z = m02 * * m1.x = m10 * m1.y = m11 * m1.z = m12 * * precalc.x = focusX * precalc.y = yoff = dstOps->yOffset + dstOps->height * precalc.z = 1.0 - (focusX * focusX) * precalc.w = 1.0 / precalc.z */ paintVars = "uniform vec3 m0;" "uniform vec3 m1;" "uniform vec4 precalc;"; /* * The following code is derived from Daniel Rice's whitepaper on * radial gradient performance (attached to the bug report for 6521533). * Refer to that document as well as the setup code in the Java-level * BufferedPaints.setRadialGradientPaint() method for more details. */ distCode = // note that gl_FragCoord is in window space relative to the // lower-left corner, so we have to flip the y-coordinate here "vec3 fragCoord =" " vec3(gl_FragCoord.x, precalc.y - gl_FragCoord.y, 1.0);" "float x = dot(fragCoord, m0);" "float y = dot(fragCoord, m1);" "float xfx = x - precalc.x;" "dist = (precalc.x*xfx + sqrt(xfx*xfx + y*y*precalc.z))*precalc.w;"; return OGLPaints_CreateMultiGradProgram(flags, paintVars, distCode); } void OGLPaints_SetRadialGradientPaint(OGLContext *oglc, OGLSDOps *dstOps, jboolean useMask, jboolean linear, jint cycleMethod, jint numStops, jfloat m00, jfloat m01, jfloat m02, jfloat m10, jfloat m11, jfloat m12, jfloat focusX, void *fractions, void *pixels) { GLhandleARB radialGradProgram; GLint loc; GLfloat yoff, denom, inv_denom; jboolean large = (numStops > MAX_FRACTIONS_SMALL); jint flags = 0; J2dTraceLn(J2D_TRACE_INFO, "OGLPaints_SetRadialGradientPaint"); RETURN_IF_NULL(oglc); RETURN_IF_NULL(dstOps); OGLPaints_ResetPaint(oglc); COMPOSE_FLAGS(flags, cycleMethod, large, useMask, linear); if (useMask) { // set up the paint on texture unit 1 (instead of the usual unit 0) j2d_glActiveTextureARB(GL_TEXTURE1_ARB); } // no need to set GL_MODULATE here (it is ignored when shader is enabled) // locate/initialize the shader program for the given flags if (radialGradPrograms[flags] == 0) { radialGradPrograms[flags] = OGLPaints_CreateRadialGradProgram(flags); if (radialGradPrograms[flags] == 0) { // shouldn't happen, but just in case... return; } } radialGradProgram = radialGradPrograms[flags]; // update the common "uniform" values (fractions and colors) OGLPaints_SetMultiGradientPaint(radialGradProgram, numStops, fractions, pixels); // update the other "uniform" values loc = j2d_glGetUniformLocationARB(radialGradProgram, "m0"); j2d_glUniform3fARB(loc, m00, m01, m02); loc = j2d_glGetUniformLocationARB(radialGradProgram, "m1"); j2d_glUniform3fARB(loc, m10, m11, m12); // pack a few unrelated, precalculated values into a single vec4 yoff = (GLfloat)(dstOps->yOffset + dstOps->height); denom = 1.0f - (focusX * focusX); inv_denom = 1.0f / denom; loc = j2d_glGetUniformLocationARB(radialGradProgram, "precalc"); j2d_glUniform4fARB(loc, focusX, yoff, denom, inv_denom); if (useMask) { // restore control to texture unit 0 j2d_glActiveTextureARB(GL_TEXTURE0_ARB); } // oglc->pixel has been set appropriately in OGLPaints_ResetPaint() oglc->useMask = useMask; oglc->paintState = sun_java2d_SunGraphics2D_PAINT_RAD_GRADIENT; } #endif /* !HEADLESS */ Other Java examples (source code examples)Here is a short list of links related to this Java OGLPaints.c source code file: |
... this post is sponsored by my books ... | |
#1 New Release! |
FP Best Seller |
Copyright 1998-2024 Alvin Alexander, alvinalexander.com
All Rights Reserved.
A percentage of advertising revenue from
pages under the /java/jwarehouse
URI on this website is
paid back to open source projects.