alvinalexander.com | career | drupal | java | mac | mysql | perl | scala | uml | unix  

Java example source code file (ec2_163.c)

This example Java source code file (ec2_163.c) is included in the alvinalexander.com "Java Source Code Warehouse" project. The intent of this project is to help you "Learn Java by Example" TM.

Learn more about this Java project at its project page.

Java - Java tags/keywords

cleanup, eccurvename, ecl_sixty_four_bit, ecl_thirty_two_bit, gfmethod, mp_checkok, mp_digit, mp_digits, mp_okay, mp_used

The ec2_163.c Java example source code

/*
 * Copyright (c) 2007, 2011, Oracle and/or its affiliates. All rights reserved.
 * Use is subject to license terms.
 *
 * This library is free software; you can redistribute it and/or
 * modify it under the terms of the GNU Lesser General Public
 * License as published by the Free Software Foundation; either
 * version 2.1 of the License, or (at your option) any later version.
 *
 * This library is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
 * Lesser General Public License for more details.
 *
 * You should have received a copy of the GNU Lesser General Public License
 * along with this library; if not, write to the Free Software Foundation,
 * Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
 *
 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
 * or visit www.oracle.com if you need additional information or have any
 * questions.
 */

/* *********************************************************************
 *
 * The Original Code is the elliptic curve math library for binary polynomial field curves.
 *
 * The Initial Developer of the Original Code is
 * Sun Microsystems, Inc.
 * Portions created by the Initial Developer are Copyright (C) 2003
 * the Initial Developer. All Rights Reserved.
 *
 * Contributor(s):
 *   Sheueling Chang-Shantz <sheueling.chang@sun.com>,
 *   Stephen Fung <fungstep@hotmail.com>, and
 *   Douglas Stebila <douglas@stebila.ca>, Sun Microsystems Laboratories.
 *
 *********************************************************************** */

#include "ec2.h"
#include "mp_gf2m.h"
#include "mp_gf2m-priv.h"
#include "mpi.h"
#include "mpi-priv.h"
#ifndef _KERNEL
#include <stdlib.h>
#endif

/* Fast reduction for polynomials over a 163-bit curve. Assumes reduction
 * polynomial with terms {163, 7, 6, 3, 0}. */
mp_err
ec_GF2m_163_mod(const mp_int *a, mp_int *r, const GFMethod *meth)
{
        mp_err res = MP_OKAY;
        mp_digit *u, z;

        if (a != r) {
                MP_CHECKOK(mp_copy(a, r));
        }
#ifdef ECL_SIXTY_FOUR_BIT
        if (MP_USED(r) < 6) {
                MP_CHECKOK(s_mp_pad(r, 6));
        }
        u = MP_DIGITS(r);
        MP_USED(r) = 6;

        /* u[5] only has 6 significant bits */
        z = u[5];
        u[2] ^= (z << 36) ^ (z << 35) ^ (z << 32) ^ (z << 29);
        z = u[4];
        u[2] ^= (z >> 28) ^ (z >> 29) ^ (z >> 32) ^ (z >> 35);
        u[1] ^= (z << 36) ^ (z << 35) ^ (z << 32) ^ (z << 29);
        z = u[3];
        u[1] ^= (z >> 28) ^ (z >> 29) ^ (z >> 32) ^ (z >> 35);
        u[0] ^= (z << 36) ^ (z << 35) ^ (z << 32) ^ (z << 29);
        z = u[2] >> 35;                         /* z only has 29 significant bits */
        u[0] ^= (z << 7) ^ (z << 6) ^ (z << 3) ^ z;
        /* clear bits above 163 */
        u[5] = u[4] = u[3] = 0;
        u[2] ^= z << 35;
#else
        if (MP_USED(r) < 11) {
                MP_CHECKOK(s_mp_pad(r, 11));
        }
        u = MP_DIGITS(r);
        MP_USED(r) = 11;

        /* u[11] only has 6 significant bits */
        z = u[10];
        u[5] ^= (z << 4) ^ (z << 3) ^ z ^ (z >> 3);
        u[4] ^= (z << 29);
        z = u[9];
        u[5] ^= (z >> 28) ^ (z >> 29);
        u[4] ^= (z << 4) ^ (z << 3) ^ z ^ (z >> 3);
        u[3] ^= (z << 29);
        z = u[8];
        u[4] ^= (z >> 28) ^ (z >> 29);
        u[3] ^= (z << 4) ^ (z << 3) ^ z ^ (z >> 3);
        u[2] ^= (z << 29);
        z = u[7];
        u[3] ^= (z >> 28) ^ (z >> 29);
        u[2] ^= (z << 4) ^ (z << 3) ^ z ^ (z >> 3);
        u[1] ^= (z << 29);
        z = u[6];
        u[2] ^= (z >> 28) ^ (z >> 29);
        u[1] ^= (z << 4) ^ (z << 3) ^ z ^ (z >> 3);
        u[0] ^= (z << 29);
        z = u[5] >> 3;                          /* z only has 29 significant bits */
        u[1] ^= (z >> 25) ^ (z >> 26);
        u[0] ^= (z << 7) ^ (z << 6) ^ (z << 3) ^ z;
        /* clear bits above 163 */
        u[11] = u[10] = u[9] = u[8] = u[7] = u[6] = 0;
        u[5] ^= z << 3;
#endif
        s_mp_clamp(r);

  CLEANUP:
        return res;
}

/* Fast squaring for polynomials over a 163-bit curve. Assumes reduction
 * polynomial with terms {163, 7, 6, 3, 0}. */
mp_err
ec_GF2m_163_sqr(const mp_int *a, mp_int *r, const GFMethod *meth)
{
        mp_err res = MP_OKAY;
        mp_digit *u, *v;

        v = MP_DIGITS(a);

#ifdef ECL_SIXTY_FOUR_BIT
        if (MP_USED(a) < 3) {
                return mp_bsqrmod(a, meth->irr_arr, r);
        }
        if (MP_USED(r) < 6) {
                MP_CHECKOK(s_mp_pad(r, 6));
        }
        MP_USED(r) = 6;
#else
        if (MP_USED(a) < 6) {
                return mp_bsqrmod(a, meth->irr_arr, r);
        }
        if (MP_USED(r) < 12) {
                MP_CHECKOK(s_mp_pad(r, 12));
        }
        MP_USED(r) = 12;
#endif
        u = MP_DIGITS(r);

#ifdef ECL_THIRTY_TWO_BIT
        u[11] = gf2m_SQR1(v[5]);
        u[10] = gf2m_SQR0(v[5]);
        u[9] = gf2m_SQR1(v[4]);
        u[8] = gf2m_SQR0(v[4]);
        u[7] = gf2m_SQR1(v[3]);
        u[6] = gf2m_SQR0(v[3]);
#endif
        u[5] = gf2m_SQR1(v[2]);
        u[4] = gf2m_SQR0(v[2]);
        u[3] = gf2m_SQR1(v[1]);
        u[2] = gf2m_SQR0(v[1]);
        u[1] = gf2m_SQR1(v[0]);
        u[0] = gf2m_SQR0(v[0]);
        return ec_GF2m_163_mod(r, r, meth);

  CLEANUP:
        return res;
}

/* Fast multiplication for polynomials over a 163-bit curve. Assumes
 * reduction polynomial with terms {163, 7, 6, 3, 0}. */
mp_err
ec_GF2m_163_mul(const mp_int *a, const mp_int *b, mp_int *r,
                                const GFMethod *meth)
{
        mp_err res = MP_OKAY;
        mp_digit a2 = 0, a1 = 0, a0, b2 = 0, b1 = 0, b0;

#ifdef ECL_THIRTY_TWO_BIT
        mp_digit a5 = 0, a4 = 0, a3 = 0, b5 = 0, b4 = 0, b3 = 0;
        mp_digit rm[6];
#endif

        if (a == b) {
                return ec_GF2m_163_sqr(a, r, meth);
        } else {
                switch (MP_USED(a)) {
#ifdef ECL_THIRTY_TWO_BIT
                case 6:
                        a5 = MP_DIGIT(a, 5);
                case 5:
                        a4 = MP_DIGIT(a, 4);
                case 4:
                        a3 = MP_DIGIT(a, 3);
#endif
                case 3:
                        a2 = MP_DIGIT(a, 2);
                case 2:
                        a1 = MP_DIGIT(a, 1);
                default:
                        a0 = MP_DIGIT(a, 0);
                }
                switch (MP_USED(b)) {
#ifdef ECL_THIRTY_TWO_BIT
                case 6:
                        b5 = MP_DIGIT(b, 5);
                case 5:
                        b4 = MP_DIGIT(b, 4);
                case 4:
                        b3 = MP_DIGIT(b, 3);
#endif
                case 3:
                        b2 = MP_DIGIT(b, 2);
                case 2:
                        b1 = MP_DIGIT(b, 1);
                default:
                        b0 = MP_DIGIT(b, 0);
                }
#ifdef ECL_SIXTY_FOUR_BIT
                MP_CHECKOK(s_mp_pad(r, 6));
                s_bmul_3x3(MP_DIGITS(r), a2, a1, a0, b2, b1, b0);
                MP_USED(r) = 6;
                s_mp_clamp(r);
#else
                MP_CHECKOK(s_mp_pad(r, 12));
                s_bmul_3x3(MP_DIGITS(r) + 6, a5, a4, a3, b5, b4, b3);
                s_bmul_3x3(MP_DIGITS(r), a2, a1, a0, b2, b1, b0);
                s_bmul_3x3(rm, a5 ^ a2, a4 ^ a1, a3 ^ a0, b5 ^ b2, b4 ^ b1,
                                   b3 ^ b0);
                rm[5] ^= MP_DIGIT(r, 5) ^ MP_DIGIT(r, 11);
                rm[4] ^= MP_DIGIT(r, 4) ^ MP_DIGIT(r, 10);
                rm[3] ^= MP_DIGIT(r, 3) ^ MP_DIGIT(r, 9);
                rm[2] ^= MP_DIGIT(r, 2) ^ MP_DIGIT(r, 8);
                rm[1] ^= MP_DIGIT(r, 1) ^ MP_DIGIT(r, 7);
                rm[0] ^= MP_DIGIT(r, 0) ^ MP_DIGIT(r, 6);
                MP_DIGIT(r, 8) ^= rm[5];
                MP_DIGIT(r, 7) ^= rm[4];
                MP_DIGIT(r, 6) ^= rm[3];
                MP_DIGIT(r, 5) ^= rm[2];
                MP_DIGIT(r, 4) ^= rm[1];
                MP_DIGIT(r, 3) ^= rm[0];
                MP_USED(r) = 12;
                s_mp_clamp(r);
#endif
                return ec_GF2m_163_mod(r, r, meth);
        }

  CLEANUP:
        return res;
}

/* Wire in fast field arithmetic for 163-bit curves. */
mp_err
ec_group_set_gf2m163(ECGroup *group, ECCurveName name)
{
        group->meth->field_mod = &ec_GF2m_163_mod;
        group->meth->field_mul = &ec_GF2m_163_mul;
        group->meth->field_sqr = &ec_GF2m_163_sqr;
        return MP_OKAY;
}

Other Java examples (source code examples)

Here is a short list of links related to this Java ec2_163.c source code file:

... this post is sponsored by my books ...

#1 New Release!

FP Best Seller

 

new blog posts

 

Copyright 1998-2024 Alvin Alexander, alvinalexander.com
All Rights Reserved.

A percentage of advertising revenue from
pages under the /java/jwarehouse URI on this website is
paid back to open source projects.