|
Java example source code file (ec2_233.c)
The ec2_233.c Java example source code/* * Copyright (c) 2007, 2011, Oracle and/or its affiliates. All rights reserved. * Use is subject to license terms. * * This library is free software; you can redistribute it and/or * modify it under the terms of the GNU Lesser General Public * License as published by the Free Software Foundation; either * version 2.1 of the License, or (at your option) any later version. * * This library is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * Lesser General Public License for more details. * * You should have received a copy of the GNU Lesser General Public License * along with this library; if not, write to the Free Software Foundation, * Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA. * * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA * or visit www.oracle.com if you need additional information or have any * questions. */ /* ********************************************************************* * * The Original Code is the elliptic curve math library for binary polynomial field curves. * * The Initial Developer of the Original Code is * Sun Microsystems, Inc. * Portions created by the Initial Developer are Copyright (C) 2003 * the Initial Developer. All Rights Reserved. * * Contributor(s): * Sheueling Chang-Shantz <sheueling.chang@sun.com>, * Stephen Fung <fungstep@hotmail.com>, and * Douglas Stebila <douglas@stebila.ca>, Sun Microsystems Laboratories. * *********************************************************************** */ #include "ec2.h" #include "mp_gf2m.h" #include "mp_gf2m-priv.h" #include "mpi.h" #include "mpi-priv.h" #ifndef _KERNEL #include <stdlib.h> #endif /* Fast reduction for polynomials over a 233-bit curve. Assumes reduction * polynomial with terms {233, 74, 0}. */ mp_err ec_GF2m_233_mod(const mp_int *a, mp_int *r, const GFMethod *meth) { mp_err res = MP_OKAY; mp_digit *u, z; if (a != r) { MP_CHECKOK(mp_copy(a, r)); } #ifdef ECL_SIXTY_FOUR_BIT if (MP_USED(r) < 8) { MP_CHECKOK(s_mp_pad(r, 8)); } u = MP_DIGITS(r); MP_USED(r) = 8; /* u[7] only has 18 significant bits */ z = u[7]; u[4] ^= (z << 33) ^ (z >> 41); u[3] ^= (z << 23); z = u[6]; u[4] ^= (z >> 31); u[3] ^= (z << 33) ^ (z >> 41); u[2] ^= (z << 23); z = u[5]; u[3] ^= (z >> 31); u[2] ^= (z << 33) ^ (z >> 41); u[1] ^= (z << 23); z = u[4]; u[2] ^= (z >> 31); u[1] ^= (z << 33) ^ (z >> 41); u[0] ^= (z << 23); z = u[3] >> 41; /* z only has 23 significant bits */ u[1] ^= (z << 10); u[0] ^= z; /* clear bits above 233 */ u[7] = u[6] = u[5] = u[4] = 0; u[3] ^= z << 41; #else if (MP_USED(r) < 15) { MP_CHECKOK(s_mp_pad(r, 15)); } u = MP_DIGITS(r); MP_USED(r) = 15; /* u[14] only has 18 significant bits */ z = u[14]; u[9] ^= (z << 1); u[7] ^= (z >> 9); u[6] ^= (z << 23); z = u[13]; u[9] ^= (z >> 31); u[8] ^= (z << 1); u[6] ^= (z >> 9); u[5] ^= (z << 23); z = u[12]; u[8] ^= (z >> 31); u[7] ^= (z << 1); u[5] ^= (z >> 9); u[4] ^= (z << 23); z = u[11]; u[7] ^= (z >> 31); u[6] ^= (z << 1); u[4] ^= (z >> 9); u[3] ^= (z << 23); z = u[10]; u[6] ^= (z >> 31); u[5] ^= (z << 1); u[3] ^= (z >> 9); u[2] ^= (z << 23); z = u[9]; u[5] ^= (z >> 31); u[4] ^= (z << 1); u[2] ^= (z >> 9); u[1] ^= (z << 23); z = u[8]; u[4] ^= (z >> 31); u[3] ^= (z << 1); u[1] ^= (z >> 9); u[0] ^= (z << 23); z = u[7] >> 9; /* z only has 23 significant bits */ u[3] ^= (z >> 22); u[2] ^= (z << 10); u[0] ^= z; /* clear bits above 233 */ u[14] = u[13] = u[12] = u[11] = u[10] = u[9] = u[8] = 0; u[7] ^= z << 9; #endif s_mp_clamp(r); CLEANUP: return res; } /* Fast squaring for polynomials over a 233-bit curve. Assumes reduction * polynomial with terms {233, 74, 0}. */ mp_err ec_GF2m_233_sqr(const mp_int *a, mp_int *r, const GFMethod *meth) { mp_err res = MP_OKAY; mp_digit *u, *v; v = MP_DIGITS(a); #ifdef ECL_SIXTY_FOUR_BIT if (MP_USED(a) < 4) { return mp_bsqrmod(a, meth->irr_arr, r); } if (MP_USED(r) < 8) { MP_CHECKOK(s_mp_pad(r, 8)); } MP_USED(r) = 8; #else if (MP_USED(a) < 8) { return mp_bsqrmod(a, meth->irr_arr, r); } if (MP_USED(r) < 15) { MP_CHECKOK(s_mp_pad(r, 15)); } MP_USED(r) = 15; #endif u = MP_DIGITS(r); #ifdef ECL_THIRTY_TWO_BIT u[14] = gf2m_SQR0(v[7]); u[13] = gf2m_SQR1(v[6]); u[12] = gf2m_SQR0(v[6]); u[11] = gf2m_SQR1(v[5]); u[10] = gf2m_SQR0(v[5]); u[9] = gf2m_SQR1(v[4]); u[8] = gf2m_SQR0(v[4]); #endif u[7] = gf2m_SQR1(v[3]); u[6] = gf2m_SQR0(v[3]); u[5] = gf2m_SQR1(v[2]); u[4] = gf2m_SQR0(v[2]); u[3] = gf2m_SQR1(v[1]); u[2] = gf2m_SQR0(v[1]); u[1] = gf2m_SQR1(v[0]); u[0] = gf2m_SQR0(v[0]); return ec_GF2m_233_mod(r, r, meth); CLEANUP: return res; } /* Fast multiplication for polynomials over a 233-bit curve. Assumes * reduction polynomial with terms {233, 74, 0}. */ mp_err ec_GF2m_233_mul(const mp_int *a, const mp_int *b, mp_int *r, const GFMethod *meth) { mp_err res = MP_OKAY; mp_digit a3 = 0, a2 = 0, a1 = 0, a0, b3 = 0, b2 = 0, b1 = 0, b0; #ifdef ECL_THIRTY_TWO_BIT mp_digit a7 = 0, a6 = 0, a5 = 0, a4 = 0, b7 = 0, b6 = 0, b5 = 0, b4 = 0; mp_digit rm[8]; #endif if (a == b) { return ec_GF2m_233_sqr(a, r, meth); } else { switch (MP_USED(a)) { #ifdef ECL_THIRTY_TWO_BIT case 8: a7 = MP_DIGIT(a, 7); case 7: a6 = MP_DIGIT(a, 6); case 6: a5 = MP_DIGIT(a, 5); case 5: a4 = MP_DIGIT(a, 4); #endif case 4: a3 = MP_DIGIT(a, 3); case 3: a2 = MP_DIGIT(a, 2); case 2: a1 = MP_DIGIT(a, 1); default: a0 = MP_DIGIT(a, 0); } switch (MP_USED(b)) { #ifdef ECL_THIRTY_TWO_BIT case 8: b7 = MP_DIGIT(b, 7); case 7: b6 = MP_DIGIT(b, 6); case 6: b5 = MP_DIGIT(b, 5); case 5: b4 = MP_DIGIT(b, 4); #endif case 4: b3 = MP_DIGIT(b, 3); case 3: b2 = MP_DIGIT(b, 2); case 2: b1 = MP_DIGIT(b, 1); default: b0 = MP_DIGIT(b, 0); } #ifdef ECL_SIXTY_FOUR_BIT MP_CHECKOK(s_mp_pad(r, 8)); s_bmul_4x4(MP_DIGITS(r), a3, a2, a1, a0, b3, b2, b1, b0); MP_USED(r) = 8; s_mp_clamp(r); #else MP_CHECKOK(s_mp_pad(r, 16)); s_bmul_4x4(MP_DIGITS(r) + 8, a7, a6, a5, a4, b7, b6, b5, b4); s_bmul_4x4(MP_DIGITS(r), a3, a2, a1, a0, b3, b2, b1, b0); s_bmul_4x4(rm, a7 ^ a3, a6 ^ a2, a5 ^ a1, a4 ^ a0, b7 ^ b3, b6 ^ b2, b5 ^ b1, b4 ^ b0); rm[7] ^= MP_DIGIT(r, 7) ^ MP_DIGIT(r, 15); rm[6] ^= MP_DIGIT(r, 6) ^ MP_DIGIT(r, 14); rm[5] ^= MP_DIGIT(r, 5) ^ MP_DIGIT(r, 13); rm[4] ^= MP_DIGIT(r, 4) ^ MP_DIGIT(r, 12); rm[3] ^= MP_DIGIT(r, 3) ^ MP_DIGIT(r, 11); rm[2] ^= MP_DIGIT(r, 2) ^ MP_DIGIT(r, 10); rm[1] ^= MP_DIGIT(r, 1) ^ MP_DIGIT(r, 9); rm[0] ^= MP_DIGIT(r, 0) ^ MP_DIGIT(r, 8); MP_DIGIT(r, 11) ^= rm[7]; MP_DIGIT(r, 10) ^= rm[6]; MP_DIGIT(r, 9) ^= rm[5]; MP_DIGIT(r, 8) ^= rm[4]; MP_DIGIT(r, 7) ^= rm[3]; MP_DIGIT(r, 6) ^= rm[2]; MP_DIGIT(r, 5) ^= rm[1]; MP_DIGIT(r, 4) ^= rm[0]; MP_USED(r) = 16; s_mp_clamp(r); #endif return ec_GF2m_233_mod(r, r, meth); } CLEANUP: return res; } /* Wire in fast field arithmetic for 233-bit curves. */ mp_err ec_group_set_gf2m233(ECGroup *group, ECCurveName name) { group->meth->field_mod = &ec_GF2m_233_mod; group->meth->field_mul = &ec_GF2m_233_mul; group->meth->field_sqr = &ec_GF2m_233_sqr; return MP_OKAY; } Other Java examples (source code examples)Here is a short list of links related to this Java ec2_233.c source code file: |
... this post is sponsored by my books ... | |
#1 New Release! |
FP Best Seller |
Copyright 1998-2024 Alvin Alexander, alvinalexander.com
All Rights Reserved.
A percentage of advertising revenue from
pages under the /java/jwarehouse
URI on this website is
paid back to open source projects.