alvinalexander.com | career | drupal | java | mac | mysql | perl | scala | uml | unix  

Java example source code file (ec2_mont.c)

This example Java source code file (ec2_mont.c) is included in the alvinalexander.com "Java Source Code Warehouse" project. The intent of this project is to help you "Learn Java by Example" TM.

Learn more about this Java project at its project page.

Java - Java tags/keywords

cleanup, ecgroup, flag, mp_badarg, mp_checkok, mp_digit_bit, mp_digits, mp_okay, mp_used, mp_yes

The ec2_mont.c Java example source code

/*
 * Copyright (c) 2007, 2011, Oracle and/or its affiliates. All rights reserved.
 * Use is subject to license terms.
 *
 * This library is free software; you can redistribute it and/or
 * modify it under the terms of the GNU Lesser General Public
 * License as published by the Free Software Foundation; either
 * version 2.1 of the License, or (at your option) any later version.
 *
 * This library is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
 * Lesser General Public License for more details.
 *
 * You should have received a copy of the GNU Lesser General Public License
 * along with this library; if not, write to the Free Software Foundation,
 * Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
 *
 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
 * or visit www.oracle.com if you need additional information or have any
 * questions.
 */

/* *********************************************************************
 *
 * The Original Code is the elliptic curve math library for binary polynomial field curves.
 *
 * The Initial Developer of the Original Code is
 * Sun Microsystems, Inc.
 * Portions created by the Initial Developer are Copyright (C) 2003
 * the Initial Developer. All Rights Reserved.
 *
 * Contributor(s):
 *   Sheueling Chang-Shantz <sheueling.chang@sun.com>,
 *   Stephen Fung <fungstep@hotmail.com>, and
 *   Douglas Stebila <douglas@stebila.ca>, Sun Microsystems Laboratories.
 *
 *********************************************************************** */

#include "ec2.h"
#include "mplogic.h"
#include "mp_gf2m.h"
#ifndef _KERNEL
#include <stdlib.h>
#endif

/* Compute the x-coordinate x/z for the point 2*(x/z) in Montgomery
 * projective coordinates. Uses algorithm Mdouble in appendix of Lopez, J.
 * and Dahab, R.  "Fast multiplication on elliptic curves over GF(2^m)
 * without precomputation". modified to not require precomputation of
 * c=b^{2^{m-1}}. */
static mp_err
gf2m_Mdouble(mp_int *x, mp_int *z, const ECGroup *group, int kmflag)
{
        mp_err res = MP_OKAY;
        mp_int t1;

        MP_DIGITS(&t1) = 0;
        MP_CHECKOK(mp_init(&t1, kmflag));

        MP_CHECKOK(group->meth->field_sqr(x, x, group->meth));
        MP_CHECKOK(group->meth->field_sqr(z, &t1, group->meth));
        MP_CHECKOK(group->meth->field_mul(x, &t1, z, group->meth));
        MP_CHECKOK(group->meth->field_sqr(x, x, group->meth));
        MP_CHECKOK(group->meth->field_sqr(&t1, &t1, group->meth));
        MP_CHECKOK(group->meth->
                           field_mul(&group->curveb, &t1, &t1, group->meth));
        MP_CHECKOK(group->meth->field_add(x, &t1, x, group->meth));

  CLEANUP:
        mp_clear(&t1);
        return res;
}

/* Compute the x-coordinate x1/z1 for the point (x1/z1)+(x2/x2) in
 * Montgomery projective coordinates. Uses algorithm Madd in appendix of
 * Lopex, J. and Dahab, R.  "Fast multiplication on elliptic curves over
 * GF(2^m) without precomputation". */
static mp_err
gf2m_Madd(const mp_int *x, mp_int *x1, mp_int *z1, mp_int *x2, mp_int *z2,
                  const ECGroup *group, int kmflag)
{
        mp_err res = MP_OKAY;
        mp_int t1, t2;

        MP_DIGITS(&t1) = 0;
        MP_DIGITS(&t2) = 0;
        MP_CHECKOK(mp_init(&t1, kmflag));
        MP_CHECKOK(mp_init(&t2, kmflag));

        MP_CHECKOK(mp_copy(x, &t1));
        MP_CHECKOK(group->meth->field_mul(x1, z2, x1, group->meth));
        MP_CHECKOK(group->meth->field_mul(z1, x2, z1, group->meth));
        MP_CHECKOK(group->meth->field_mul(x1, z1, &t2, group->meth));
        MP_CHECKOK(group->meth->field_add(z1, x1, z1, group->meth));
        MP_CHECKOK(group->meth->field_sqr(z1, z1, group->meth));
        MP_CHECKOK(group->meth->field_mul(z1, &t1, x1, group->meth));
        MP_CHECKOK(group->meth->field_add(x1, &t2, x1, group->meth));

  CLEANUP:
        mp_clear(&t1);
        mp_clear(&t2);
        return res;
}

/* Compute the x, y affine coordinates from the point (x1, z1) (x2, z2)
 * using Montgomery point multiplication algorithm Mxy() in appendix of
 * Lopex, J. and Dahab, R.  "Fast multiplication on elliptic curves over
 * GF(2^m) without precomputation". Returns: 0 on error 1 if return value
 * should be the point at infinity 2 otherwise */
static int
gf2m_Mxy(const mp_int *x, const mp_int *y, mp_int *x1, mp_int *z1,
                 mp_int *x2, mp_int *z2, const ECGroup *group)
{
        mp_err res = MP_OKAY;
        int ret = 0;
        mp_int t3, t4, t5;

        MP_DIGITS(&t3) = 0;
        MP_DIGITS(&t4) = 0;
        MP_DIGITS(&t5) = 0;
        MP_CHECKOK(mp_init(&t3, FLAG(x2)));
        MP_CHECKOK(mp_init(&t4, FLAG(x2)));
        MP_CHECKOK(mp_init(&t5, FLAG(x2)));

        if (mp_cmp_z(z1) == 0) {
                mp_zero(x2);
                mp_zero(z2);
                ret = 1;
                goto CLEANUP;
        }

        if (mp_cmp_z(z2) == 0) {
                MP_CHECKOK(mp_copy(x, x2));
                MP_CHECKOK(group->meth->field_add(x, y, z2, group->meth));
                ret = 2;
                goto CLEANUP;
        }

        MP_CHECKOK(mp_set_int(&t5, 1));
        if (group->meth->field_enc) {
                MP_CHECKOK(group->meth->field_enc(&t5, &t5, group->meth));
        }

        MP_CHECKOK(group->meth->field_mul(z1, z2, &t3, group->meth));

        MP_CHECKOK(group->meth->field_mul(z1, x, z1, group->meth));
        MP_CHECKOK(group->meth->field_add(z1, x1, z1, group->meth));
        MP_CHECKOK(group->meth->field_mul(z2, x, z2, group->meth));
        MP_CHECKOK(group->meth->field_mul(z2, x1, x1, group->meth));
        MP_CHECKOK(group->meth->field_add(z2, x2, z2, group->meth));

        MP_CHECKOK(group->meth->field_mul(z2, z1, z2, group->meth));
        MP_CHECKOK(group->meth->field_sqr(x, &t4, group->meth));
        MP_CHECKOK(group->meth->field_add(&t4, y, &t4, group->meth));
        MP_CHECKOK(group->meth->field_mul(&t4, &t3, &t4, group->meth));
        MP_CHECKOK(group->meth->field_add(&t4, z2, &t4, group->meth));

        MP_CHECKOK(group->meth->field_mul(&t3, x, &t3, group->meth));
        MP_CHECKOK(group->meth->field_div(&t5, &t3, &t3, group->meth));
        MP_CHECKOK(group->meth->field_mul(&t3, &t4, &t4, group->meth));
        MP_CHECKOK(group->meth->field_mul(x1, &t3, x2, group->meth));
        MP_CHECKOK(group->meth->field_add(x2, x, z2, group->meth));

        MP_CHECKOK(group->meth->field_mul(z2, &t4, z2, group->meth));
        MP_CHECKOK(group->meth->field_add(z2, y, z2, group->meth));

        ret = 2;

  CLEANUP:
        mp_clear(&t3);
        mp_clear(&t4);
        mp_clear(&t5);
        if (res == MP_OKAY) {
                return ret;
        } else {
                return 0;
        }
}

/* Computes R = nP based on algorithm 2P of Lopex, J. and Dahab, R.  "Fast
 * multiplication on elliptic curves over GF(2^m) without
 * precomputation". Elliptic curve points P and R can be identical. Uses
 * Montgomery projective coordinates. */
mp_err
ec_GF2m_pt_mul_mont(const mp_int *n, const mp_int *px, const mp_int *py,
                                        mp_int *rx, mp_int *ry, const ECGroup *group)
{
        mp_err res = MP_OKAY;
        mp_int x1, x2, z1, z2;
        int i, j;
        mp_digit top_bit, mask;

        MP_DIGITS(&x1) = 0;
        MP_DIGITS(&x2) = 0;
        MP_DIGITS(&z1) = 0;
        MP_DIGITS(&z2) = 0;
        MP_CHECKOK(mp_init(&x1, FLAG(n)));
        MP_CHECKOK(mp_init(&x2, FLAG(n)));
        MP_CHECKOK(mp_init(&z1, FLAG(n)));
        MP_CHECKOK(mp_init(&z2, FLAG(n)));

        /* if result should be point at infinity */
        if ((mp_cmp_z(n) == 0) || (ec_GF2m_pt_is_inf_aff(px, py) == MP_YES)) {
                MP_CHECKOK(ec_GF2m_pt_set_inf_aff(rx, ry));
                goto CLEANUP;
        }

        MP_CHECKOK(mp_copy(px, &x1));   /* x1 = px */
        MP_CHECKOK(mp_set_int(&z1, 1)); /* z1 = 1 */
        MP_CHECKOK(group->meth->field_sqr(&x1, &z2, group->meth));      /* z2 =
                                                                                                                                 * x1^2 =
                                                                                                                                 * px^2 */
        MP_CHECKOK(group->meth->field_sqr(&z2, &x2, group->meth));
        MP_CHECKOK(group->meth->field_add(&x2, &group->curveb, &x2, group->meth));      /* x2
                                                                                                                                                                 * =
                                                                                                                                                                 * px^4
                                                                                                                                                                 * +
                                                                                                                                                                 * b
                                                                                                                                                                 */

        /* find top-most bit and go one past it */
        i = MP_USED(n) - 1;
        j = MP_DIGIT_BIT - 1;
        top_bit = 1;
        top_bit <<= MP_DIGIT_BIT - 1;
        mask = top_bit;
        while (!(MP_DIGITS(n)[i] & mask)) {
                mask >>= 1;
                j--;
        }
        mask >>= 1;
        j--;

        /* if top most bit was at word break, go to next word */
        if (!mask) {
                i--;
                j = MP_DIGIT_BIT - 1;
                mask = top_bit;
        }

        for (; i >= 0; i--) {
                for (; j >= 0; j--) {
                        if (MP_DIGITS(n)[i] & mask) {
                                MP_CHECKOK(gf2m_Madd(px, &x1, &z1, &x2, &z2, group, FLAG(n)));
                                MP_CHECKOK(gf2m_Mdouble(&x2, &z2, group, FLAG(n)));
                        } else {
                                MP_CHECKOK(gf2m_Madd(px, &x2, &z2, &x1, &z1, group, FLAG(n)));
                                MP_CHECKOK(gf2m_Mdouble(&x1, &z1, group, FLAG(n)));
                        }
                        mask >>= 1;
                }
                j = MP_DIGIT_BIT - 1;
                mask = top_bit;
        }

        /* convert out of "projective" coordinates */
        i = gf2m_Mxy(px, py, &x1, &z1, &x2, &z2, group);
        if (i == 0) {
                res = MP_BADARG;
                goto CLEANUP;
        } else if (i == 1) {
                MP_CHECKOK(ec_GF2m_pt_set_inf_aff(rx, ry));
        } else {
                MP_CHECKOK(mp_copy(&x2, rx));
                MP_CHECKOK(mp_copy(&z2, ry));
        }

  CLEANUP:
        mp_clear(&x1);
        mp_clear(&x2);
        mp_clear(&z1);
        mp_clear(&z2);
        return res;
}

Other Java examples (source code examples)

Here is a short list of links related to this Java ec2_mont.c source code file:

... this post is sponsored by my books ...

#1 New Release!

FP Best Seller

 

new blog posts

 

Copyright 1998-2024 Alvin Alexander, alvinalexander.com
All Rights Reserved.

A percentage of advertising revenue from
pages under the /java/jwarehouse URI on this website is
paid back to open source projects.