|
Java example source code file (ec2_mont.c)
The ec2_mont.c Java example source code/* * Copyright (c) 2007, 2011, Oracle and/or its affiliates. All rights reserved. * Use is subject to license terms. * * This library is free software; you can redistribute it and/or * modify it under the terms of the GNU Lesser General Public * License as published by the Free Software Foundation; either * version 2.1 of the License, or (at your option) any later version. * * This library is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * Lesser General Public License for more details. * * You should have received a copy of the GNU Lesser General Public License * along with this library; if not, write to the Free Software Foundation, * Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA. * * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA * or visit www.oracle.com if you need additional information or have any * questions. */ /* ********************************************************************* * * The Original Code is the elliptic curve math library for binary polynomial field curves. * * The Initial Developer of the Original Code is * Sun Microsystems, Inc. * Portions created by the Initial Developer are Copyright (C) 2003 * the Initial Developer. All Rights Reserved. * * Contributor(s): * Sheueling Chang-Shantz <sheueling.chang@sun.com>, * Stephen Fung <fungstep@hotmail.com>, and * Douglas Stebila <douglas@stebila.ca>, Sun Microsystems Laboratories. * *********************************************************************** */ #include "ec2.h" #include "mplogic.h" #include "mp_gf2m.h" #ifndef _KERNEL #include <stdlib.h> #endif /* Compute the x-coordinate x/z for the point 2*(x/z) in Montgomery * projective coordinates. Uses algorithm Mdouble in appendix of Lopez, J. * and Dahab, R. "Fast multiplication on elliptic curves over GF(2^m) * without precomputation". modified to not require precomputation of * c=b^{2^{m-1}}. */ static mp_err gf2m_Mdouble(mp_int *x, mp_int *z, const ECGroup *group, int kmflag) { mp_err res = MP_OKAY; mp_int t1; MP_DIGITS(&t1) = 0; MP_CHECKOK(mp_init(&t1, kmflag)); MP_CHECKOK(group->meth->field_sqr(x, x, group->meth)); MP_CHECKOK(group->meth->field_sqr(z, &t1, group->meth)); MP_CHECKOK(group->meth->field_mul(x, &t1, z, group->meth)); MP_CHECKOK(group->meth->field_sqr(x, x, group->meth)); MP_CHECKOK(group->meth->field_sqr(&t1, &t1, group->meth)); MP_CHECKOK(group->meth-> field_mul(&group->curveb, &t1, &t1, group->meth)); MP_CHECKOK(group->meth->field_add(x, &t1, x, group->meth)); CLEANUP: mp_clear(&t1); return res; } /* Compute the x-coordinate x1/z1 for the point (x1/z1)+(x2/x2) in * Montgomery projective coordinates. Uses algorithm Madd in appendix of * Lopex, J. and Dahab, R. "Fast multiplication on elliptic curves over * GF(2^m) without precomputation". */ static mp_err gf2m_Madd(const mp_int *x, mp_int *x1, mp_int *z1, mp_int *x2, mp_int *z2, const ECGroup *group, int kmflag) { mp_err res = MP_OKAY; mp_int t1, t2; MP_DIGITS(&t1) = 0; MP_DIGITS(&t2) = 0; MP_CHECKOK(mp_init(&t1, kmflag)); MP_CHECKOK(mp_init(&t2, kmflag)); MP_CHECKOK(mp_copy(x, &t1)); MP_CHECKOK(group->meth->field_mul(x1, z2, x1, group->meth)); MP_CHECKOK(group->meth->field_mul(z1, x2, z1, group->meth)); MP_CHECKOK(group->meth->field_mul(x1, z1, &t2, group->meth)); MP_CHECKOK(group->meth->field_add(z1, x1, z1, group->meth)); MP_CHECKOK(group->meth->field_sqr(z1, z1, group->meth)); MP_CHECKOK(group->meth->field_mul(z1, &t1, x1, group->meth)); MP_CHECKOK(group->meth->field_add(x1, &t2, x1, group->meth)); CLEANUP: mp_clear(&t1); mp_clear(&t2); return res; } /* Compute the x, y affine coordinates from the point (x1, z1) (x2, z2) * using Montgomery point multiplication algorithm Mxy() in appendix of * Lopex, J. and Dahab, R. "Fast multiplication on elliptic curves over * GF(2^m) without precomputation". Returns: 0 on error 1 if return value * should be the point at infinity 2 otherwise */ static int gf2m_Mxy(const mp_int *x, const mp_int *y, mp_int *x1, mp_int *z1, mp_int *x2, mp_int *z2, const ECGroup *group) { mp_err res = MP_OKAY; int ret = 0; mp_int t3, t4, t5; MP_DIGITS(&t3) = 0; MP_DIGITS(&t4) = 0; MP_DIGITS(&t5) = 0; MP_CHECKOK(mp_init(&t3, FLAG(x2))); MP_CHECKOK(mp_init(&t4, FLAG(x2))); MP_CHECKOK(mp_init(&t5, FLAG(x2))); if (mp_cmp_z(z1) == 0) { mp_zero(x2); mp_zero(z2); ret = 1; goto CLEANUP; } if (mp_cmp_z(z2) == 0) { MP_CHECKOK(mp_copy(x, x2)); MP_CHECKOK(group->meth->field_add(x, y, z2, group->meth)); ret = 2; goto CLEANUP; } MP_CHECKOK(mp_set_int(&t5, 1)); if (group->meth->field_enc) { MP_CHECKOK(group->meth->field_enc(&t5, &t5, group->meth)); } MP_CHECKOK(group->meth->field_mul(z1, z2, &t3, group->meth)); MP_CHECKOK(group->meth->field_mul(z1, x, z1, group->meth)); MP_CHECKOK(group->meth->field_add(z1, x1, z1, group->meth)); MP_CHECKOK(group->meth->field_mul(z2, x, z2, group->meth)); MP_CHECKOK(group->meth->field_mul(z2, x1, x1, group->meth)); MP_CHECKOK(group->meth->field_add(z2, x2, z2, group->meth)); MP_CHECKOK(group->meth->field_mul(z2, z1, z2, group->meth)); MP_CHECKOK(group->meth->field_sqr(x, &t4, group->meth)); MP_CHECKOK(group->meth->field_add(&t4, y, &t4, group->meth)); MP_CHECKOK(group->meth->field_mul(&t4, &t3, &t4, group->meth)); MP_CHECKOK(group->meth->field_add(&t4, z2, &t4, group->meth)); MP_CHECKOK(group->meth->field_mul(&t3, x, &t3, group->meth)); MP_CHECKOK(group->meth->field_div(&t5, &t3, &t3, group->meth)); MP_CHECKOK(group->meth->field_mul(&t3, &t4, &t4, group->meth)); MP_CHECKOK(group->meth->field_mul(x1, &t3, x2, group->meth)); MP_CHECKOK(group->meth->field_add(x2, x, z2, group->meth)); MP_CHECKOK(group->meth->field_mul(z2, &t4, z2, group->meth)); MP_CHECKOK(group->meth->field_add(z2, y, z2, group->meth)); ret = 2; CLEANUP: mp_clear(&t3); mp_clear(&t4); mp_clear(&t5); if (res == MP_OKAY) { return ret; } else { return 0; } } /* Computes R = nP based on algorithm 2P of Lopex, J. and Dahab, R. "Fast * multiplication on elliptic curves over GF(2^m) without * precomputation". Elliptic curve points P and R can be identical. Uses * Montgomery projective coordinates. */ mp_err ec_GF2m_pt_mul_mont(const mp_int *n, const mp_int *px, const mp_int *py, mp_int *rx, mp_int *ry, const ECGroup *group) { mp_err res = MP_OKAY; mp_int x1, x2, z1, z2; int i, j; mp_digit top_bit, mask; MP_DIGITS(&x1) = 0; MP_DIGITS(&x2) = 0; MP_DIGITS(&z1) = 0; MP_DIGITS(&z2) = 0; MP_CHECKOK(mp_init(&x1, FLAG(n))); MP_CHECKOK(mp_init(&x2, FLAG(n))); MP_CHECKOK(mp_init(&z1, FLAG(n))); MP_CHECKOK(mp_init(&z2, FLAG(n))); /* if result should be point at infinity */ if ((mp_cmp_z(n) == 0) || (ec_GF2m_pt_is_inf_aff(px, py) == MP_YES)) { MP_CHECKOK(ec_GF2m_pt_set_inf_aff(rx, ry)); goto CLEANUP; } MP_CHECKOK(mp_copy(px, &x1)); /* x1 = px */ MP_CHECKOK(mp_set_int(&z1, 1)); /* z1 = 1 */ MP_CHECKOK(group->meth->field_sqr(&x1, &z2, group->meth)); /* z2 = * x1^2 = * px^2 */ MP_CHECKOK(group->meth->field_sqr(&z2, &x2, group->meth)); MP_CHECKOK(group->meth->field_add(&x2, &group->curveb, &x2, group->meth)); /* x2 * = * px^4 * + * b */ /* find top-most bit and go one past it */ i = MP_USED(n) - 1; j = MP_DIGIT_BIT - 1; top_bit = 1; top_bit <<= MP_DIGIT_BIT - 1; mask = top_bit; while (!(MP_DIGITS(n)[i] & mask)) { mask >>= 1; j--; } mask >>= 1; j--; /* if top most bit was at word break, go to next word */ if (!mask) { i--; j = MP_DIGIT_BIT - 1; mask = top_bit; } for (; i >= 0; i--) { for (; j >= 0; j--) { if (MP_DIGITS(n)[i] & mask) { MP_CHECKOK(gf2m_Madd(px, &x1, &z1, &x2, &z2, group, FLAG(n))); MP_CHECKOK(gf2m_Mdouble(&x2, &z2, group, FLAG(n))); } else { MP_CHECKOK(gf2m_Madd(px, &x2, &z2, &x1, &z1, group, FLAG(n))); MP_CHECKOK(gf2m_Mdouble(&x1, &z1, group, FLAG(n))); } mask >>= 1; } j = MP_DIGIT_BIT - 1; mask = top_bit; } /* convert out of "projective" coordinates */ i = gf2m_Mxy(px, py, &x1, &z1, &x2, &z2, group); if (i == 0) { res = MP_BADARG; goto CLEANUP; } else if (i == 1) { MP_CHECKOK(ec_GF2m_pt_set_inf_aff(rx, ry)); } else { MP_CHECKOK(mp_copy(&x2, rx)); MP_CHECKOK(mp_copy(&z2, ry)); } CLEANUP: mp_clear(&x1); mp_clear(&x2); mp_clear(&z1); mp_clear(&z2); return res; } Other Java examples (source code examples)Here is a short list of links related to this Java ec2_mont.c source code file: |
... this post is sponsored by my books ... | |
#1 New Release! |
FP Best Seller |
Copyright 1998-2024 Alvin Alexander, alvinalexander.com
All Rights Reserved.
A percentage of advertising revenue from
pages under the /java/jwarehouse
URI on this website is
paid back to open source projects.