alvinalexander.com | career | drupal | java | mac | mysql | perl | scala | uml | unix  

Java example source code file (ecl_mult.c)

This example Java source code file (ecl_mult.c) is included in the alvinalexander.com "Java Source Code Warehouse" project. The intent of this project is to help you "Learn Java by Example" TM.

Learn more about this Java project at its project page.

Java - Java tags/keywords

argchk, cleanup, ecgroup, ecl_max_field_size_digits, ecpoint_mul, flag, mp_alloc, mp_badarg, mp_checkok, mp_digits, mp_get_bit, mp_okay, mp_used, null

The ecl_mult.c Java example source code

/*
 * Copyright (c) 2007, 2011, Oracle and/or its affiliates. All rights reserved.
 * Use is subject to license terms.
 *
 * This library is free software; you can redistribute it and/or
 * modify it under the terms of the GNU Lesser General Public
 * License as published by the Free Software Foundation; either
 * version 2.1 of the License, or (at your option) any later version.
 *
 * This library is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
 * Lesser General Public License for more details.
 *
 * You should have received a copy of the GNU Lesser General Public License
 * along with this library; if not, write to the Free Software Foundation,
 * Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
 *
 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
 * or visit www.oracle.com if you need additional information or have any
 * questions.
 */

/* *********************************************************************
 *
 * The Original Code is the elliptic curve math library.
 *
 * The Initial Developer of the Original Code is
 * Sun Microsystems, Inc.
 * Portions created by the Initial Developer are Copyright (C) 2003
 * the Initial Developer. All Rights Reserved.
 *
 * Contributor(s):
 *   Douglas Stebila <douglas@stebila.ca>, Sun Microsystems Laboratories
 *
 *********************************************************************** */

#include "mpi.h"
#include "mplogic.h"
#include "ecl.h"
#include "ecl-priv.h"
#ifndef _KERNEL
#include <stdlib.h>
#endif

/* Elliptic curve scalar-point multiplication. Computes R(x, y) = k * P(x,
 * y).  If x, y = NULL, then P is assumed to be the generator (base point)
 * of the group of points on the elliptic curve. Input and output values
 * are assumed to be NOT field-encoded. */
mp_err
ECPoint_mul(const ECGroup *group, const mp_int *k, const mp_int *px,
                        const mp_int *py, mp_int *rx, mp_int *ry)
{
        mp_err res = MP_OKAY;
        mp_int kt;

        ARGCHK((k != NULL) && (group != NULL), MP_BADARG);
        MP_DIGITS(&kt) = 0;

        /* want scalar to be less than or equal to group order */
        if (mp_cmp(k, &group->order) > 0) {
                MP_CHECKOK(mp_init(&kt, FLAG(k)));
                MP_CHECKOK(mp_mod(k, &group->order, &kt));
        } else {
                MP_SIGN(&kt) = MP_ZPOS;
                MP_USED(&kt) = MP_USED(k);
                MP_ALLOC(&kt) = MP_ALLOC(k);
                MP_DIGITS(&kt) = MP_DIGITS(k);
        }

        if ((px == NULL) || (py == NULL)) {
                if (group->base_point_mul) {
                        MP_CHECKOK(group->base_point_mul(&kt, rx, ry, group));
                } else {
                        MP_CHECKOK(group->
                                           point_mul(&kt, &group->genx, &group->geny, rx, ry,
                                                                 group));
                }
        } else {
                if (group->meth->field_enc) {
                        MP_CHECKOK(group->meth->field_enc(px, rx, group->meth));
                        MP_CHECKOK(group->meth->field_enc(py, ry, group->meth));
                        MP_CHECKOK(group->point_mul(&kt, rx, ry, rx, ry, group));
                } else {
                        MP_CHECKOK(group->point_mul(&kt, px, py, rx, ry, group));
                }
        }
        if (group->meth->field_dec) {
                MP_CHECKOK(group->meth->field_dec(rx, rx, group->meth));
                MP_CHECKOK(group->meth->field_dec(ry, ry, group->meth));
        }

  CLEANUP:
        if (MP_DIGITS(&kt) != MP_DIGITS(k)) {
                mp_clear(&kt);
        }
        return res;
}

/* Elliptic curve scalar-point multiplication. Computes R(x, y) = k1 * G +
 * k2 * P(x, y), where G is the generator (base point) of the group of
 * points on the elliptic curve. Allows k1 = NULL or { k2, P } = NULL.
 * Input and output values are assumed to be NOT field-encoded. */
mp_err
ec_pts_mul_basic(const mp_int *k1, const mp_int *k2, const mp_int *px,
                                 const mp_int *py, mp_int *rx, mp_int *ry,
                                 const ECGroup *group)
{
        mp_err res = MP_OKAY;
        mp_int sx, sy;

        ARGCHK(group != NULL, MP_BADARG);
        ARGCHK(!((k1 == NULL)
                         && ((k2 == NULL) || (px == NULL)
                                 || (py == NULL))), MP_BADARG);

        /* if some arguments are not defined used ECPoint_mul */
        if (k1 == NULL) {
                return ECPoint_mul(group, k2, px, py, rx, ry);
        } else if ((k2 == NULL) || (px == NULL) || (py == NULL)) {
                return ECPoint_mul(group, k1, NULL, NULL, rx, ry);
        }

        MP_DIGITS(&sx) = 0;
        MP_DIGITS(&sy) = 0;
        MP_CHECKOK(mp_init(&sx, FLAG(k1)));
        MP_CHECKOK(mp_init(&sy, FLAG(k1)));

        MP_CHECKOK(ECPoint_mul(group, k1, NULL, NULL, &sx, &sy));
        MP_CHECKOK(ECPoint_mul(group, k2, px, py, rx, ry));

        if (group->meth->field_enc) {
                MP_CHECKOK(group->meth->field_enc(&sx, &sx, group->meth));
                MP_CHECKOK(group->meth->field_enc(&sy, &sy, group->meth));
                MP_CHECKOK(group->meth->field_enc(rx, rx, group->meth));
                MP_CHECKOK(group->meth->field_enc(ry, ry, group->meth));
        }

        MP_CHECKOK(group->point_add(&sx, &sy, rx, ry, rx, ry, group));

        if (group->meth->field_dec) {
                MP_CHECKOK(group->meth->field_dec(rx, rx, group->meth));
                MP_CHECKOK(group->meth->field_dec(ry, ry, group->meth));
        }

  CLEANUP:
        mp_clear(&sx);
        mp_clear(&sy);
        return res;
}

/* Elliptic curve scalar-point multiplication. Computes R(x, y) = k1 * G +
 * k2 * P(x, y), where G is the generator (base point) of the group of
 * points on the elliptic curve. Allows k1 = NULL or { k2, P } = NULL.
 * Input and output values are assumed to be NOT field-encoded. Uses
 * algorithm 15 (simultaneous multiple point multiplication) from Brown,
 * Hankerson, Lopez, Menezes. Software Implementation of the NIST
 * Elliptic Curves over Prime Fields. */
mp_err
ec_pts_mul_simul_w2(const mp_int *k1, const mp_int *k2, const mp_int *px,
                                        const mp_int *py, mp_int *rx, mp_int *ry,
                                        const ECGroup *group)
{
        mp_err res = MP_OKAY;
        mp_int precomp[4][4][2];
        const mp_int *a, *b;
        int i, j;
        int ai, bi, d;

        ARGCHK(group != NULL, MP_BADARG);
        ARGCHK(!((k1 == NULL)
                         && ((k2 == NULL) || (px == NULL)
                                 || (py == NULL))), MP_BADARG);

        /* if some arguments are not defined used ECPoint_mul */
        if (k1 == NULL) {
                return ECPoint_mul(group, k2, px, py, rx, ry);
        } else if ((k2 == NULL) || (px == NULL) || (py == NULL)) {
                return ECPoint_mul(group, k1, NULL, NULL, rx, ry);
        }

        /* initialize precomputation table */
        for (i = 0; i < 4; i++) {
                for (j = 0; j < 4; j++) {
                        MP_DIGITS(&precomp[i][j][0]) = 0;
                        MP_DIGITS(&precomp[i][j][1]) = 0;
                }
        }
        for (i = 0; i < 4; i++) {
                for (j = 0; j < 4; j++) {
                         MP_CHECKOK( mp_init_size(&precomp[i][j][0],
                                         ECL_MAX_FIELD_SIZE_DIGITS, FLAG(k1)) );
                         MP_CHECKOK( mp_init_size(&precomp[i][j][1],
                                         ECL_MAX_FIELD_SIZE_DIGITS, FLAG(k1)) );
                }
        }

        /* fill precomputation table */
        /* assign {k1, k2} = {a, b} such that len(a) >= len(b) */
        if (mpl_significant_bits(k1) < mpl_significant_bits(k2)) {
                a = k2;
                b = k1;
                if (group->meth->field_enc) {
                        MP_CHECKOK(group->meth->
                                           field_enc(px, &precomp[1][0][0], group->meth));
                        MP_CHECKOK(group->meth->
                                           field_enc(py, &precomp[1][0][1], group->meth));
                } else {
                        MP_CHECKOK(mp_copy(px, &precomp[1][0][0]));
                        MP_CHECKOK(mp_copy(py, &precomp[1][0][1]));
                }
                MP_CHECKOK(mp_copy(&group->genx, &precomp[0][1][0]));
                MP_CHECKOK(mp_copy(&group->geny, &precomp[0][1][1]));
        } else {
                a = k1;
                b = k2;
                MP_CHECKOK(mp_copy(&group->genx, &precomp[1][0][0]));
                MP_CHECKOK(mp_copy(&group->geny, &precomp[1][0][1]));
                if (group->meth->field_enc) {
                        MP_CHECKOK(group->meth->
                                           field_enc(px, &precomp[0][1][0], group->meth));
                        MP_CHECKOK(group->meth->
                                           field_enc(py, &precomp[0][1][1], group->meth));
                } else {
                        MP_CHECKOK(mp_copy(px, &precomp[0][1][0]));
                        MP_CHECKOK(mp_copy(py, &precomp[0][1][1]));
                }
        }
        /* precompute [*][0][*] */
        mp_zero(&precomp[0][0][0]);
        mp_zero(&precomp[0][0][1]);
        MP_CHECKOK(group->
                           point_dbl(&precomp[1][0][0], &precomp[1][0][1],
                                                 &precomp[2][0][0], &precomp[2][0][1], group));
        MP_CHECKOK(group->
                           point_add(&precomp[1][0][0], &precomp[1][0][1],
                                                 &precomp[2][0][0], &precomp[2][0][1],
                                                 &precomp[3][0][0], &precomp[3][0][1], group));
        /* precompute [*][1][*] */
        for (i = 1; i < 4; i++) {
                MP_CHECKOK(group->
                                   point_add(&precomp[0][1][0], &precomp[0][1][1],
                                                         &precomp[i][0][0], &precomp[i][0][1],
                                                         &precomp[i][1][0], &precomp[i][1][1], group));
        }
        /* precompute [*][2][*] */
        MP_CHECKOK(group->
                           point_dbl(&precomp[0][1][0], &precomp[0][1][1],
                                                 &precomp[0][2][0], &precomp[0][2][1], group));
        for (i = 1; i < 4; i++) {
                MP_CHECKOK(group->
                                   point_add(&precomp[0][2][0], &precomp[0][2][1],
                                                         &precomp[i][0][0], &precomp[i][0][1],
                                                         &precomp[i][2][0], &precomp[i][2][1], group));
        }
        /* precompute [*][3][*] */
        MP_CHECKOK(group->
                           point_add(&precomp[0][1][0], &precomp[0][1][1],
                                                 &precomp[0][2][0], &precomp[0][2][1],
                                                 &precomp[0][3][0], &precomp[0][3][1], group));
        for (i = 1; i < 4; i++) {
                MP_CHECKOK(group->
                                   point_add(&precomp[0][3][0], &precomp[0][3][1],
                                                         &precomp[i][0][0], &precomp[i][0][1],
                                                         &precomp[i][3][0], &precomp[i][3][1], group));
        }

        d = (mpl_significant_bits(a) + 1) / 2;

        /* R = inf */
        mp_zero(rx);
        mp_zero(ry);

        for (i = d - 1; i >= 0; i--) {
                ai = MP_GET_BIT(a, 2 * i + 1);
                ai <<= 1;
                ai |= MP_GET_BIT(a, 2 * i);
                bi = MP_GET_BIT(b, 2 * i + 1);
                bi <<= 1;
                bi |= MP_GET_BIT(b, 2 * i);
                /* R = 2^2 * R */
                MP_CHECKOK(group->point_dbl(rx, ry, rx, ry, group));
                MP_CHECKOK(group->point_dbl(rx, ry, rx, ry, group));
                /* R = R + (ai * A + bi * B) */
                MP_CHECKOK(group->
                                   point_add(rx, ry, &precomp[ai][bi][0],
                                                         &precomp[ai][bi][1], rx, ry, group));
        }

        if (group->meth->field_dec) {
                MP_CHECKOK(group->meth->field_dec(rx, rx, group->meth));
                MP_CHECKOK(group->meth->field_dec(ry, ry, group->meth));
        }

  CLEANUP:
        for (i = 0; i < 4; i++) {
                for (j = 0; j < 4; j++) {
                        mp_clear(&precomp[i][j][0]);
                        mp_clear(&precomp[i][j][1]);
                }
        }
        return res;
}

/* Elliptic curve scalar-point multiplication. Computes R(x, y) = k1 * G +
 * k2 * P(x, y), where G is the generator (base point) of the group of
 * points on the elliptic curve. Allows k1 = NULL or { k2, P } = NULL.
 * Input and output values are assumed to be NOT field-encoded. */
mp_err
ECPoints_mul(const ECGroup *group, const mp_int *k1, const mp_int *k2,
                         const mp_int *px, const mp_int *py, mp_int *rx, mp_int *ry)
{
        mp_err res = MP_OKAY;
        mp_int k1t, k2t;
        const mp_int *k1p, *k2p;

        MP_DIGITS(&k1t) = 0;
        MP_DIGITS(&k2t) = 0;

        ARGCHK(group != NULL, MP_BADARG);

        /* want scalar to be less than or equal to group order */
        if (k1 != NULL) {
                if (mp_cmp(k1, &group->order) >= 0) {
                        MP_CHECKOK(mp_init(&k1t, FLAG(k1)));
                        MP_CHECKOK(mp_mod(k1, &group->order, &k1t));
                        k1p = &k1t;
                } else {
                        k1p = k1;
                }
        } else {
                k1p = k1;
        }
        if (k2 != NULL) {
                if (mp_cmp(k2, &group->order) >= 0) {
                        MP_CHECKOK(mp_init(&k2t, FLAG(k2)));
                        MP_CHECKOK(mp_mod(k2, &group->order, &k2t));
                        k2p = &k2t;
                } else {
                        k2p = k2;
                }
        } else {
                k2p = k2;
        }

        /* if points_mul is defined, then use it */
        if (group->points_mul) {
                res = group->points_mul(k1p, k2p, px, py, rx, ry, group);
        } else {
                res = ec_pts_mul_simul_w2(k1p, k2p, px, py, rx, ry, group);
        }

  CLEANUP:
        mp_clear(&k1t);
        mp_clear(&k2t);
        return res;
}

Other Java examples (source code examples)

Here is a short list of links related to this Java ecl_mult.c source code file:

... this post is sponsored by my books ...

#1 New Release!

FP Best Seller

 

new blog posts

 

Copyright 1998-2021 Alvin Alexander, alvinalexander.com
All Rights Reserved.

A percentage of advertising revenue from
pages under the /java/jwarehouse URI on this website is
paid back to open source projects.