alvinalexander.com | career | drupal | java | mac | mysql | perl | scala | uml | unix  

Java example source code file (ecp.h)

This example Java source code file (ecp.h) is included in the alvinalexander.com "Java Source Code Warehouse" project. The intent of this project is to help you "Learn Java by Example" TM.

Learn more about this Java project at its project page.

Java - Java tags/keywords

ecgroup, ecl_enable_gfp_pt_mul_aff, ecl_enable_gfp_pt_mul_jac

The ecp.h Java example source code

/*
 * Copyright (c) 2007, 2011, Oracle and/or its affiliates. All rights reserved.
 * Use is subject to license terms.
 *
 * This library is free software; you can redistribute it and/or
 * modify it under the terms of the GNU Lesser General Public
 * License as published by the Free Software Foundation; either
 * version 2.1 of the License, or (at your option) any later version.
 *
 * This library is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
 * Lesser General Public License for more details.
 *
 * You should have received a copy of the GNU Lesser General Public License
 * along with this library; if not, write to the Free Software Foundation,
 * Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
 *
 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
 * or visit www.oracle.com if you need additional information or have any
 * questions.
 */

/* *********************************************************************
 *
 * The Original Code is the elliptic curve math library for prime field curves.
 *
 * The Initial Developer of the Original Code is
 * Sun Microsystems, Inc.
 * Portions created by the Initial Developer are Copyright (C) 2003
 * the Initial Developer. All Rights Reserved.
 *
 * Contributor(s):
 *   Douglas Stebila <douglas@stebila.ca>, Sun Microsystems Laboratories
 *
 *********************************************************************** */

#ifndef _ECP_H
#define _ECP_H

#include "ecl-priv.h"

/* Checks if point P(px, py) is at infinity.  Uses affine coordinates. */
mp_err ec_GFp_pt_is_inf_aff(const mp_int *px, const mp_int *py);

/* Sets P(px, py) to be the point at infinity.  Uses affine coordinates. */
mp_err ec_GFp_pt_set_inf_aff(mp_int *px, mp_int *py);

/* Computes R = P + Q where R is (rx, ry), P is (px, py) and Q is (qx,
 * qy). Uses affine coordinates. */
mp_err ec_GFp_pt_add_aff(const mp_int *px, const mp_int *py,
                                                 const mp_int *qx, const mp_int *qy, mp_int *rx,
                                                 mp_int *ry, const ECGroup *group);

/* Computes R = P - Q.  Uses affine coordinates. */
mp_err ec_GFp_pt_sub_aff(const mp_int *px, const mp_int *py,
                                                 const mp_int *qx, const mp_int *qy, mp_int *rx,
                                                 mp_int *ry, const ECGroup *group);

/* Computes R = 2P.  Uses affine coordinates. */
mp_err ec_GFp_pt_dbl_aff(const mp_int *px, const mp_int *py, mp_int *rx,
                                                 mp_int *ry, const ECGroup *group);

/* Validates a point on a GFp curve. */
mp_err ec_GFp_validate_point(const mp_int *px, const mp_int *py, const ECGroup *group);

#ifdef ECL_ENABLE_GFP_PT_MUL_AFF
/* Computes R = nP where R is (rx, ry) and P is (px, py). The parameters
 * a, b and p are the elliptic curve coefficients and the prime that
 * determines the field GFp.  Uses affine coordinates. */
mp_err ec_GFp_pt_mul_aff(const mp_int *n, const mp_int *px,
                                                 const mp_int *py, mp_int *rx, mp_int *ry,
                                                 const ECGroup *group);
#endif

/* Converts a point P(px, py) from affine coordinates to Jacobian
 * projective coordinates R(rx, ry, rz). */
mp_err ec_GFp_pt_aff2jac(const mp_int *px, const mp_int *py, mp_int *rx,
                                                 mp_int *ry, mp_int *rz, const ECGroup *group);

/* Converts a point P(px, py, pz) from Jacobian projective coordinates to
 * affine coordinates R(rx, ry). */
mp_err ec_GFp_pt_jac2aff(const mp_int *px, const mp_int *py,
                                                 const mp_int *pz, mp_int *rx, mp_int *ry,
                                                 const ECGroup *group);

/* Checks if point P(px, py, pz) is at infinity.  Uses Jacobian
 * coordinates. */
mp_err ec_GFp_pt_is_inf_jac(const mp_int *px, const mp_int *py,
                                                        const mp_int *pz);

/* Sets P(px, py, pz) to be the point at infinity.  Uses Jacobian
 * coordinates. */
mp_err ec_GFp_pt_set_inf_jac(mp_int *px, mp_int *py, mp_int *pz);

/* Computes R = P + Q where R is (rx, ry, rz), P is (px, py, pz) and Q is
 * (qx, qy, qz).  Uses Jacobian coordinates. */
mp_err ec_GFp_pt_add_jac_aff(const mp_int *px, const mp_int *py,
                                                         const mp_int *pz, const mp_int *qx,
                                                         const mp_int *qy, mp_int *rx, mp_int *ry,
                                                         mp_int *rz, const ECGroup *group);

/* Computes R = 2P.  Uses Jacobian coordinates. */
mp_err ec_GFp_pt_dbl_jac(const mp_int *px, const mp_int *py,
                                                 const mp_int *pz, mp_int *rx, mp_int *ry,
                                                 mp_int *rz, const ECGroup *group);

#ifdef ECL_ENABLE_GFP_PT_MUL_JAC
/* Computes R = nP where R is (rx, ry) and P is (px, py). The parameters
 * a, b and p are the elliptic curve coefficients and the prime that
 * determines the field GFp.  Uses Jacobian coordinates. */
mp_err ec_GFp_pt_mul_jac(const mp_int *n, const mp_int *px,
                                                 const mp_int *py, mp_int *rx, mp_int *ry,
                                                 const ECGroup *group);
#endif

/* Computes R(x, y) = k1 * G + k2 * P(x, y), where G is the generator
 * (base point) of the group of points on the elliptic curve. Allows k1 =
 * NULL or { k2, P } = NULL.  Implemented using mixed Jacobian-affine
 * coordinates. Input and output values are assumed to be NOT
 * field-encoded and are in affine form. */
mp_err
 ec_GFp_pts_mul_jac(const mp_int *k1, const mp_int *k2, const mp_int *px,
                                        const mp_int *py, mp_int *rx, mp_int *ry,
                                        const ECGroup *group);

/* Computes R = nP where R is (rx, ry) and P is the base point. Elliptic
 * curve points P and R can be identical. Uses mixed Modified-Jacobian
 * co-ordinates for doubling and Chudnovsky Jacobian coordinates for
 * additions. Assumes input is already field-encoded using field_enc, and
 * returns output that is still field-encoded. Uses 5-bit window NAF
 * method (algorithm 11) for scalar-point multiplication from Brown,
 * Hankerson, Lopez, Menezes. Software Implementation of the NIST Elliptic
 * Curves Over Prime Fields. */
mp_err
 ec_GFp_pt_mul_jm_wNAF(const mp_int *n, const mp_int *px, const mp_int *py,
                                           mp_int *rx, mp_int *ry, const ECGroup *group);

#endif /* _ECP_H */

Other Java examples (source code examples)

Here is a short list of links related to this Java ecp.h source code file:

... this post is sponsored by my books ...

#1 New Release!

FP Best Seller

 

new blog posts

 

Copyright 1998-2024 Alvin Alexander, alvinalexander.com
All Rights Reserved.

A percentage of advertising revenue from
pages under the /java/jwarehouse URI on this website is
paid back to open source projects.