|
Java example source code file (ecp_192.c)
The ecp_192.c Java example source code/* * Copyright (c) 2007, 2011, Oracle and/or its affiliates. All rights reserved. * Use is subject to license terms. * * This library is free software; you can redistribute it and/or * modify it under the terms of the GNU Lesser General Public * License as published by the Free Software Foundation; either * version 2.1 of the License, or (at your option) any later version. * * This library is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * Lesser General Public License for more details. * * You should have received a copy of the GNU Lesser General Public License * along with this library; if not, write to the Free Software Foundation, * Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA. * * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA * or visit www.oracle.com if you need additional information or have any * questions. */ /* ********************************************************************* * * The Original Code is the elliptic curve math library for prime field curves. * * The Initial Developer of the Original Code is * Sun Microsystems, Inc. * Portions created by the Initial Developer are Copyright (C) 2003 * the Initial Developer. All Rights Reserved. * * Contributor(s): * Douglas Stebila <douglas@stebila.ca>, Sun Microsystems Laboratories * *********************************************************************** */ #include "ecp.h" #include "mpi.h" #include "mplogic.h" #include "mpi-priv.h" #ifndef _KERNEL #include <stdlib.h> #endif #define ECP192_DIGITS ECL_CURVE_DIGITS(192) /* Fast modular reduction for p192 = 2^192 - 2^64 - 1. a can be r. Uses * algorithm 7 from Brown, Hankerson, Lopez, Menezes. Software * Implementation of the NIST Elliptic Curves over Prime Fields. */ mp_err ec_GFp_nistp192_mod(const mp_int *a, mp_int *r, const GFMethod *meth) { mp_err res = MP_OKAY; mp_size a_used = MP_USED(a); mp_digit r3; #ifndef MPI_AMD64_ADD mp_digit carry; #endif #ifdef ECL_THIRTY_TWO_BIT mp_digit a5a = 0, a5b = 0, a4a = 0, a4b = 0, a3a = 0, a3b = 0; mp_digit r0a, r0b, r1a, r1b, r2a, r2b; #else mp_digit a5 = 0, a4 = 0, a3 = 0; mp_digit r0, r1, r2; #endif /* reduction not needed if a is not larger than field size */ if (a_used < ECP192_DIGITS) { if (a == r) { return MP_OKAY; } return mp_copy(a, r); } /* for polynomials larger than twice the field size, use regular * reduction */ if (a_used > ECP192_DIGITS*2) { MP_CHECKOK(mp_mod(a, &meth->irr, r)); } else { /* copy out upper words of a */ #ifdef ECL_THIRTY_TWO_BIT /* in all the math below, * nXb is most signifiant, nXa is least significant */ switch (a_used) { case 12: a5b = MP_DIGIT(a, 11); case 11: a5a = MP_DIGIT(a, 10); case 10: a4b = MP_DIGIT(a, 9); case 9: a4a = MP_DIGIT(a, 8); case 8: a3b = MP_DIGIT(a, 7); case 7: a3a = MP_DIGIT(a, 6); } r2b= MP_DIGIT(a, 5); r2a= MP_DIGIT(a, 4); r1b = MP_DIGIT(a, 3); r1a = MP_DIGIT(a, 2); r0b = MP_DIGIT(a, 1); r0a = MP_DIGIT(a, 0); /* implement r = (a2,a1,a0)+(a5,a5,a5)+(a4,a4,0)+(0,a3,a3) */ MP_ADD_CARRY(r0a, a3a, r0a, 0, carry); MP_ADD_CARRY(r0b, a3b, r0b, carry, carry); MP_ADD_CARRY(r1a, a3a, r1a, carry, carry); MP_ADD_CARRY(r1b, a3b, r1b, carry, carry); MP_ADD_CARRY(r2a, a4a, r2a, carry, carry); MP_ADD_CARRY(r2b, a4b, r2b, carry, carry); r3 = carry; carry = 0; MP_ADD_CARRY(r0a, a5a, r0a, 0, carry); MP_ADD_CARRY(r0b, a5b, r0b, carry, carry); MP_ADD_CARRY(r1a, a5a, r1a, carry, carry); MP_ADD_CARRY(r1b, a5b, r1b, carry, carry); MP_ADD_CARRY(r2a, a5a, r2a, carry, carry); MP_ADD_CARRY(r2b, a5b, r2b, carry, carry); r3 += carry; MP_ADD_CARRY(r1a, a4a, r1a, 0, carry); MP_ADD_CARRY(r1b, a4b, r1b, carry, carry); MP_ADD_CARRY(r2a, 0, r2a, carry, carry); MP_ADD_CARRY(r2b, 0, r2b, carry, carry); r3 += carry; /* reduce out the carry */ while (r3) { MP_ADD_CARRY(r0a, r3, r0a, 0, carry); MP_ADD_CARRY(r0b, 0, r0b, carry, carry); MP_ADD_CARRY(r1a, r3, r1a, carry, carry); MP_ADD_CARRY(r1b, 0, r1b, carry, carry); MP_ADD_CARRY(r2a, 0, r2a, carry, carry); MP_ADD_CARRY(r2b, 0, r2b, carry, carry); r3 = carry; } /* check for final reduction */ /* * our field is 0xffffffffffffffff, 0xfffffffffffffffe, * 0xffffffffffffffff. That means we can only be over and need * one more reduction * if r2 == 0xffffffffffffffffff (same as r2+1 == 0) * and * r1 == 0xffffffffffffffffff or * r1 == 0xfffffffffffffffffe and r0 = 0xfffffffffffffffff * In all cases, we subtract the field (or add the 2's * complement value (1,1,0)). (r0, r1, r2) */ if (((r2b == 0xffffffff) && (r2a == 0xffffffff) && (r1b == 0xffffffff) ) && ((r1a == 0xffffffff) || (r1a == 0xfffffffe) && (r0a == 0xffffffff) && (r0b == 0xffffffff)) ) { /* do a quick subtract */ MP_ADD_CARRY(r0a, 1, r0a, 0, carry); r0b += carry; r1a = r1b = r2a = r2b = 0; } /* set the lower words of r */ if (a != r) { MP_CHECKOK(s_mp_pad(r, 6)); } MP_DIGIT(r, 5) = r2b; MP_DIGIT(r, 4) = r2a; MP_DIGIT(r, 3) = r1b; MP_DIGIT(r, 2) = r1a; MP_DIGIT(r, 1) = r0b; MP_DIGIT(r, 0) = r0a; MP_USED(r) = 6; #else switch (a_used) { case 6: a5 = MP_DIGIT(a, 5); case 5: a4 = MP_DIGIT(a, 4); case 4: a3 = MP_DIGIT(a, 3); } r2 = MP_DIGIT(a, 2); r1 = MP_DIGIT(a, 1); r0 = MP_DIGIT(a, 0); /* implement r = (a2,a1,a0)+(a5,a5,a5)+(a4,a4,0)+(0,a3,a3) */ #ifndef MPI_AMD64_ADD MP_ADD_CARRY_ZERO(r0, a3, r0, carry); MP_ADD_CARRY(r1, a3, r1, carry, carry); MP_ADD_CARRY(r2, a4, r2, carry, carry); r3 = carry; MP_ADD_CARRY_ZERO(r0, a5, r0, carry); MP_ADD_CARRY(r1, a5, r1, carry, carry); MP_ADD_CARRY(r2, a5, r2, carry, carry); r3 += carry; MP_ADD_CARRY_ZERO(r1, a4, r1, carry); MP_ADD_CARRY(r2, 0, r2, carry, carry); r3 += carry; #else r2 = MP_DIGIT(a, 2); r1 = MP_DIGIT(a, 1); r0 = MP_DIGIT(a, 0); /* set the lower words of r */ __asm__ ( "xorq %3,%3 \n\t" "addq %4,%0 \n\t" "adcq %4,%1 \n\t" "adcq %5,%2 \n\t" "adcq $0,%3 \n\t" "addq %6,%0 \n\t" "adcq %6,%1 \n\t" "adcq %6,%2 \n\t" "adcq $0,%3 \n\t" "addq %5,%1 \n\t" "adcq $0,%2 \n\t" "adcq $0,%3 \n\t" : "=r"(r0), "=r"(r1), "=r"(r2), "=r"(r3), "=r"(a3), "=r"(a4), "=r"(a5) : "0" (r0), "1" (r1), "2" (r2), "3" (r3), "4" (a3), "5" (a4), "6"(a5) : "%cc" ); #endif /* reduce out the carry */ while (r3) { #ifndef MPI_AMD64_ADD MP_ADD_CARRY_ZERO(r0, r3, r0, carry); MP_ADD_CARRY(r1, r3, r1, carry, carry); MP_ADD_CARRY(r2, 0, r2, carry, carry); r3 = carry; #else a3=r3; __asm__ ( "xorq %3,%3 \n\t" "addq %4,%0 \n\t" "adcq %4,%1 \n\t" "adcq $0,%2 \n\t" "adcq $0,%3 \n\t" : "=r"(r0), "=r"(r1), "=r"(r2), "=r"(r3), "=r"(a3) : "0" (r0), "1" (r1), "2" (r2), "3" (r3), "4"(a3) : "%cc" ); #endif } /* check for final reduction */ /* * our field is 0xffffffffffffffff, 0xfffffffffffffffe, * 0xffffffffffffffff. That means we can only be over and need * one more reduction * if r2 == 0xffffffffffffffffff (same as r2+1 == 0) * and * r1 == 0xffffffffffffffffff or * r1 == 0xfffffffffffffffffe and r0 = 0xfffffffffffffffff * In all cases, we subtract the field (or add the 2's * complement value (1,1,0)). (r0, r1, r2) */ if (r3 || ((r2 == MP_DIGIT_MAX) && ((r1 == MP_DIGIT_MAX) || ((r1 == (MP_DIGIT_MAX-1)) && (r0 == MP_DIGIT_MAX))))) { /* do a quick subtract */ r0++; r1 = r2 = 0; } /* set the lower words of r */ if (a != r) { MP_CHECKOK(s_mp_pad(r, 3)); } MP_DIGIT(r, 2) = r2; MP_DIGIT(r, 1) = r1; MP_DIGIT(r, 0) = r0; MP_USED(r) = 3; #endif } CLEANUP: return res; } #ifndef ECL_THIRTY_TWO_BIT /* Compute the sum of 192 bit curves. Do the work in-line since the * number of words are so small, we don't want to overhead of mp function * calls. Uses optimized modular reduction for p192. */ mp_err ec_GFp_nistp192_add(const mp_int *a, const mp_int *b, mp_int *r, const GFMethod *meth) { mp_err res = MP_OKAY; mp_digit a0 = 0, a1 = 0, a2 = 0; mp_digit r0 = 0, r1 = 0, r2 = 0; mp_digit carry; switch(MP_USED(a)) { case 3: a2 = MP_DIGIT(a,2); case 2: a1 = MP_DIGIT(a,1); case 1: a0 = MP_DIGIT(a,0); } switch(MP_USED(b)) { case 3: r2 = MP_DIGIT(b,2); case 2: r1 = MP_DIGIT(b,1); case 1: r0 = MP_DIGIT(b,0); } #ifndef MPI_AMD64_ADD MP_ADD_CARRY_ZERO(a0, r0, r0, carry); MP_ADD_CARRY(a1, r1, r1, carry, carry); MP_ADD_CARRY(a2, r2, r2, carry, carry); #else __asm__ ( "xorq %3,%3 \n\t" "addq %4,%0 \n\t" "adcq %5,%1 \n\t" "adcq %6,%2 \n\t" "adcq $0,%3 \n\t" : "=r"(r0), "=r"(r1), "=r"(r2), "=r"(carry) : "r" (a0), "r" (a1), "r" (a2), "0" (r0), "1" (r1), "2" (r2) : "%cc" ); #endif /* Do quick 'subract' if we've gone over * (add the 2's complement of the curve field) */ if (carry || ((r2 == MP_DIGIT_MAX) && ((r1 == MP_DIGIT_MAX) || ((r1 == (MP_DIGIT_MAX-1)) && (r0 == MP_DIGIT_MAX))))) { #ifndef MPI_AMD64_ADD MP_ADD_CARRY_ZERO(r0, 1, r0, carry); MP_ADD_CARRY(r1, 1, r1, carry, carry); MP_ADD_CARRY(r2, 0, r2, carry, carry); #else __asm__ ( "addq $1,%0 \n\t" "adcq $1,%1 \n\t" "adcq $0,%2 \n\t" : "=r"(r0), "=r"(r1), "=r"(r2) : "0" (r0), "1" (r1), "2" (r2) : "%cc" ); #endif } MP_CHECKOK(s_mp_pad(r, 3)); MP_DIGIT(r, 2) = r2; MP_DIGIT(r, 1) = r1; MP_DIGIT(r, 0) = r0; MP_SIGN(r) = MP_ZPOS; MP_USED(r) = 3; s_mp_clamp(r); CLEANUP: return res; } /* Compute the diff of 192 bit curves. Do the work in-line since the * number of words are so small, we don't want to overhead of mp function * calls. Uses optimized modular reduction for p192. */ mp_err ec_GFp_nistp192_sub(const mp_int *a, const mp_int *b, mp_int *r, const GFMethod *meth) { mp_err res = MP_OKAY; mp_digit b0 = 0, b1 = 0, b2 = 0; mp_digit r0 = 0, r1 = 0, r2 = 0; mp_digit borrow; switch(MP_USED(a)) { case 3: r2 = MP_DIGIT(a,2); case 2: r1 = MP_DIGIT(a,1); case 1: r0 = MP_DIGIT(a,0); } switch(MP_USED(b)) { case 3: b2 = MP_DIGIT(b,2); case 2: b1 = MP_DIGIT(b,1); case 1: b0 = MP_DIGIT(b,0); } #ifndef MPI_AMD64_ADD MP_SUB_BORROW(r0, b0, r0, 0, borrow); MP_SUB_BORROW(r1, b1, r1, borrow, borrow); MP_SUB_BORROW(r2, b2, r2, borrow, borrow); #else __asm__ ( "xorq %3,%3 \n\t" "subq %4,%0 \n\t" "sbbq %5,%1 \n\t" "sbbq %6,%2 \n\t" "adcq $0,%3 \n\t" : "=r"(r0), "=r"(r1), "=r"(r2), "=r"(borrow) : "r" (b0), "r" (b1), "r" (b2), "0" (r0), "1" (r1), "2" (r2) : "%cc" ); #endif /* Do quick 'add' if we've gone under 0 * (subtract the 2's complement of the curve field) */ if (borrow) { #ifndef MPI_AMD64_ADD MP_SUB_BORROW(r0, 1, r0, 0, borrow); MP_SUB_BORROW(r1, 1, r1, borrow, borrow); MP_SUB_BORROW(r2, 0, r2, borrow, borrow); #else __asm__ ( "subq $1,%0 \n\t" "sbbq $1,%1 \n\t" "sbbq $0,%2 \n\t" : "=r"(r0), "=r"(r1), "=r"(r2) : "0" (r0), "1" (r1), "2" (r2) : "%cc" ); #endif } MP_CHECKOK(s_mp_pad(r, 3)); MP_DIGIT(r, 2) = r2; MP_DIGIT(r, 1) = r1; MP_DIGIT(r, 0) = r0; MP_SIGN(r) = MP_ZPOS; MP_USED(r) = 3; s_mp_clamp(r); CLEANUP: return res; } #endif /* Compute the square of polynomial a, reduce modulo p192. Store the * result in r. r could be a. Uses optimized modular reduction for p192. */ mp_err ec_GFp_nistp192_sqr(const mp_int *a, mp_int *r, const GFMethod *meth) { mp_err res = MP_OKAY; MP_CHECKOK(mp_sqr(a, r)); MP_CHECKOK(ec_GFp_nistp192_mod(r, r, meth)); CLEANUP: return res; } /* Compute the product of two polynomials a and b, reduce modulo p192. * Store the result in r. r could be a or b; a could be b. Uses * optimized modular reduction for p192. */ mp_err ec_GFp_nistp192_mul(const mp_int *a, const mp_int *b, mp_int *r, const GFMethod *meth) { mp_err res = MP_OKAY; MP_CHECKOK(mp_mul(a, b, r)); MP_CHECKOK(ec_GFp_nistp192_mod(r, r, meth)); CLEANUP: return res; } /* Divides two field elements. If a is NULL, then returns the inverse of * b. */ mp_err ec_GFp_nistp192_div(const mp_int *a, const mp_int *b, mp_int *r, const GFMethod *meth) { mp_err res = MP_OKAY; mp_int t; /* If a is NULL, then return the inverse of b, otherwise return a/b. */ if (a == NULL) { return mp_invmod(b, &meth->irr, r); } else { /* MPI doesn't support divmod, so we implement it using invmod and * mulmod. */ MP_CHECKOK(mp_init(&t, FLAG(b))); MP_CHECKOK(mp_invmod(b, &meth->irr, &t)); MP_CHECKOK(mp_mul(a, &t, r)); MP_CHECKOK(ec_GFp_nistp192_mod(r, r, meth)); CLEANUP: mp_clear(&t); return res; } } /* Wire in fast field arithmetic and precomputation of base point for * named curves. */ mp_err ec_group_set_gfp192(ECGroup *group, ECCurveName name) { if (name == ECCurve_NIST_P192) { group->meth->field_mod = &ec_GFp_nistp192_mod; group->meth->field_mul = &ec_GFp_nistp192_mul; group->meth->field_sqr = &ec_GFp_nistp192_sqr; group->meth->field_div = &ec_GFp_nistp192_div; #ifndef ECL_THIRTY_TWO_BIT group->meth->field_add = &ec_GFp_nistp192_add; group->meth->field_sub = &ec_GFp_nistp192_sub; #endif } return MP_OKAY; } Other Java examples (source code examples)Here is a short list of links related to this Java ecp_192.c source code file: |
... this post is sponsored by my books ... | |
#1 New Release! |
FP Best Seller |
Copyright 1998-2024 Alvin Alexander, alvinalexander.com
All Rights Reserved.
A percentage of advertising revenue from
pages under the /java/jwarehouse
URI on this website is
paid back to open source projects.