alvinalexander.com | career | drupal | java | mac | mysql | perl | scala | uml | unix  

Java example source code file (ecp_384.c)

This example Java source code file (ecp_384.c) is included in the alvinalexander.com "Java Source Code Warehouse" project. The intent of this project is to help you "Learn Java by Example" TM.

Learn more about this Java project at its project page.

Java - Java tags/keywords

cleanup, eccurve_nist_p384, eccurvename, ecl_thirty_two_bit, gfmethod, mp_alloc, mp_checkok, mp_digit, mp_digits, mp_okay, mp_sign, mp_used, mp_zpos

The ecp_384.c Java example source code

/*
 * Copyright (c) 2007, 2011, Oracle and/or its affiliates. All rights reserved.
 * Use is subject to license terms.
 *
 * This library is free software; you can redistribute it and/or
 * modify it under the terms of the GNU Lesser General Public
 * License as published by the Free Software Foundation; either
 * version 2.1 of the License, or (at your option) any later version.
 *
 * This library is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
 * Lesser General Public License for more details.
 *
 * You should have received a copy of the GNU Lesser General Public License
 * along with this library; if not, write to the Free Software Foundation,
 * Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
 *
 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
 * or visit www.oracle.com if you need additional information or have any
 * questions.
 */

/* *********************************************************************
 *
 * The Original Code is the elliptic curve math library for prime field curves.
 *
 * The Initial Developer of the Original Code is
 * Sun Microsystems, Inc.
 * Portions created by the Initial Developer are Copyright (C) 2003
 * the Initial Developer. All Rights Reserved.
 *
 * Contributor(s):
 *   Douglas Stebila <douglas@stebila.ca>
 *
 *********************************************************************** */

#include "ecp.h"
#include "mpi.h"
#include "mplogic.h"
#include "mpi-priv.h"
#ifndef _KERNEL
#include <stdlib.h>
#endif

/* Fast modular reduction for p384 = 2^384 - 2^128 - 2^96 + 2^32 - 1.  a can be r.
 * Uses algorithm 2.30 from Hankerson, Menezes, Vanstone. Guide to
 * Elliptic Curve Cryptography. */
mp_err
ec_GFp_nistp384_mod(const mp_int *a, mp_int *r, const GFMethod *meth)
{
        mp_err res = MP_OKAY;
        int a_bits = mpl_significant_bits(a);
        int i;

        /* m1, m2 are statically-allocated mp_int of exactly the size we need */
        mp_int m[10];

#ifdef ECL_THIRTY_TWO_BIT
        mp_digit s[10][12];
        for (i = 0; i < 10; i++) {
                MP_SIGN(&m[i]) = MP_ZPOS;
                MP_ALLOC(&m[i]) = 12;
                MP_USED(&m[i]) = 12;
                MP_DIGITS(&m[i]) = s[i];
        }
#else
        mp_digit s[10][6];
        for (i = 0; i < 10; i++) {
                MP_SIGN(&m[i]) = MP_ZPOS;
                MP_ALLOC(&m[i]) = 6;
                MP_USED(&m[i]) = 6;
                MP_DIGITS(&m[i]) = s[i];
        }
#endif

#ifdef ECL_THIRTY_TWO_BIT
        /* for polynomials larger than twice the field size or polynomials
         * not using all words, use regular reduction */
        if ((a_bits > 768) || (a_bits <= 736)) {
                MP_CHECKOK(mp_mod(a, &meth->irr, r));
        } else {
                for (i = 0; i < 12; i++) {
                        s[0][i] = MP_DIGIT(a, i);
                }
                s[1][0] = 0;
                s[1][1] = 0;
                s[1][2] = 0;
                s[1][3] = 0;
                s[1][4] = MP_DIGIT(a, 21);
                s[1][5] = MP_DIGIT(a, 22);
                s[1][6] = MP_DIGIT(a, 23);
                s[1][7] = 0;
                s[1][8] = 0;
                s[1][9] = 0;
                s[1][10] = 0;
                s[1][11] = 0;
                for (i = 0; i < 12; i++) {
                        s[2][i] = MP_DIGIT(a, i+12);
                }
                s[3][0] = MP_DIGIT(a, 21);
                s[3][1] = MP_DIGIT(a, 22);
                s[3][2] = MP_DIGIT(a, 23);
                for (i = 3; i < 12; i++) {
                        s[3][i] = MP_DIGIT(a, i+9);
                }
                s[4][0] = 0;
                s[4][1] = MP_DIGIT(a, 23);
                s[4][2] = 0;
                s[4][3] = MP_DIGIT(a, 20);
                for (i = 4; i < 12; i++) {
                        s[4][i] = MP_DIGIT(a, i+8);
                }
                s[5][0] = 0;
                s[5][1] = 0;
                s[5][2] = 0;
                s[5][3] = 0;
                s[5][4] = MP_DIGIT(a, 20);
                s[5][5] = MP_DIGIT(a, 21);
                s[5][6] = MP_DIGIT(a, 22);
                s[5][7] = MP_DIGIT(a, 23);
                s[5][8] = 0;
                s[5][9] = 0;
                s[5][10] = 0;
                s[5][11] = 0;
                s[6][0] = MP_DIGIT(a, 20);
                s[6][1] = 0;
                s[6][2] = 0;
                s[6][3] = MP_DIGIT(a, 21);
                s[6][4] = MP_DIGIT(a, 22);
                s[6][5] = MP_DIGIT(a, 23);
                s[6][6] = 0;
                s[6][7] = 0;
                s[6][8] = 0;
                s[6][9] = 0;
                s[6][10] = 0;
                s[6][11] = 0;
                s[7][0] = MP_DIGIT(a, 23);
                for (i = 1; i < 12; i++) {
                        s[7][i] = MP_DIGIT(a, i+11);
                }
                s[8][0] = 0;
                s[8][1] = MP_DIGIT(a, 20);
                s[8][2] = MP_DIGIT(a, 21);
                s[8][3] = MP_DIGIT(a, 22);
                s[8][4] = MP_DIGIT(a, 23);
                s[8][5] = 0;
                s[8][6] = 0;
                s[8][7] = 0;
                s[8][8] = 0;
                s[8][9] = 0;
                s[8][10] = 0;
                s[8][11] = 0;
                s[9][0] = 0;
                s[9][1] = 0;
                s[9][2] = 0;
                s[9][3] = MP_DIGIT(a, 23);
                s[9][4] = MP_DIGIT(a, 23);
                s[9][5] = 0;
                s[9][6] = 0;
                s[9][7] = 0;
                s[9][8] = 0;
                s[9][9] = 0;
                s[9][10] = 0;
                s[9][11] = 0;

                MP_CHECKOK(mp_add(&m[0], &m[1], r));
                MP_CHECKOK(mp_add(r, &m[1], r));
                MP_CHECKOK(mp_add(r, &m[2], r));
                MP_CHECKOK(mp_add(r, &m[3], r));
                MP_CHECKOK(mp_add(r, &m[4], r));
                MP_CHECKOK(mp_add(r, &m[5], r));
                MP_CHECKOK(mp_add(r, &m[6], r));
                MP_CHECKOK(mp_sub(r, &m[7], r));
                MP_CHECKOK(mp_sub(r, &m[8], r));
                MP_CHECKOK(mp_submod(r, &m[9], &meth->irr, r));
                s_mp_clamp(r);
        }
#else
        /* for polynomials larger than twice the field size or polynomials
         * not using all words, use regular reduction */
        if ((a_bits > 768) || (a_bits <= 736)) {
                MP_CHECKOK(mp_mod(a, &meth->irr, r));
        } else {
                for (i = 0; i < 6; i++) {
                        s[0][i] = MP_DIGIT(a, i);
                }
                s[1][0] = 0;
                s[1][1] = 0;
                s[1][2] = (MP_DIGIT(a, 10) >> 32) | (MP_DIGIT(a, 11) << 32);
                s[1][3] = MP_DIGIT(a, 11) >> 32;
                s[1][4] = 0;
                s[1][5] = 0;
                for (i = 0; i < 6; i++) {
                        s[2][i] = MP_DIGIT(a, i+6);
                }
                s[3][0] = (MP_DIGIT(a, 10) >> 32) | (MP_DIGIT(a, 11) << 32);
                s[3][1] = (MP_DIGIT(a, 11) >> 32) | (MP_DIGIT(a, 6) << 32);
                for (i = 2; i < 6; i++) {
                        s[3][i] = (MP_DIGIT(a, i+4) >> 32) | (MP_DIGIT(a, i+5) << 32);
                }
                s[4][0] = (MP_DIGIT(a, 11) >> 32) << 32;
                s[4][1] = MP_DIGIT(a, 10) << 32;
                for (i = 2; i < 6; i++) {
                        s[4][i] = MP_DIGIT(a, i+4);
                }
                s[5][0] = 0;
                s[5][1] = 0;
                s[5][2] = MP_DIGIT(a, 10);
                s[5][3] = MP_DIGIT(a, 11);
                s[5][4] = 0;
                s[5][5] = 0;
                s[6][0] = (MP_DIGIT(a, 10) << 32) >> 32;
                s[6][1] = (MP_DIGIT(a, 10) >> 32) << 32;
                s[6][2] = MP_DIGIT(a, 11);
                s[6][3] = 0;
                s[6][4] = 0;
                s[6][5] = 0;
                s[7][0] = (MP_DIGIT(a, 11) >> 32) | (MP_DIGIT(a, 6) << 32);
                for (i = 1; i < 6; i++) {
                        s[7][i] = (MP_DIGIT(a, i+5) >> 32) | (MP_DIGIT(a, i+6) << 32);
                }
                s[8][0] = MP_DIGIT(a, 10) << 32;
                s[8][1] = (MP_DIGIT(a, 10) >> 32) | (MP_DIGIT(a, 11) << 32);
                s[8][2] = MP_DIGIT(a, 11) >> 32;
                s[8][3] = 0;
                s[8][4] = 0;
                s[8][5] = 0;
                s[9][0] = 0;
                s[9][1] = (MP_DIGIT(a, 11) >> 32) << 32;
                s[9][2] = MP_DIGIT(a, 11) >> 32;
                s[9][3] = 0;
                s[9][4] = 0;
                s[9][5] = 0;

                MP_CHECKOK(mp_add(&m[0], &m[1], r));
                MP_CHECKOK(mp_add(r, &m[1], r));
                MP_CHECKOK(mp_add(r, &m[2], r));
                MP_CHECKOK(mp_add(r, &m[3], r));
                MP_CHECKOK(mp_add(r, &m[4], r));
                MP_CHECKOK(mp_add(r, &m[5], r));
                MP_CHECKOK(mp_add(r, &m[6], r));
                MP_CHECKOK(mp_sub(r, &m[7], r));
                MP_CHECKOK(mp_sub(r, &m[8], r));
                MP_CHECKOK(mp_submod(r, &m[9], &meth->irr, r));
                s_mp_clamp(r);
        }
#endif

  CLEANUP:
        return res;
}

/* Compute the square of polynomial a, reduce modulo p384. Store the
 * result in r.  r could be a.  Uses optimized modular reduction for p384.
 */
mp_err
ec_GFp_nistp384_sqr(const mp_int *a, mp_int *r, const GFMethod *meth)
{
        mp_err res = MP_OKAY;

        MP_CHECKOK(mp_sqr(a, r));
        MP_CHECKOK(ec_GFp_nistp384_mod(r, r, meth));
  CLEANUP:
        return res;
}

/* Compute the product of two polynomials a and b, reduce modulo p384.
 * Store the result in r.  r could be a or b; a could be b.  Uses
 * optimized modular reduction for p384. */
mp_err
ec_GFp_nistp384_mul(const mp_int *a, const mp_int *b, mp_int *r,
                                        const GFMethod *meth)
{
        mp_err res = MP_OKAY;

        MP_CHECKOK(mp_mul(a, b, r));
        MP_CHECKOK(ec_GFp_nistp384_mod(r, r, meth));
  CLEANUP:
        return res;
}

/* Wire in fast field arithmetic and precomputation of base point for
 * named curves. */
mp_err
ec_group_set_gfp384(ECGroup *group, ECCurveName name)
{
        if (name == ECCurve_NIST_P384) {
                group->meth->field_mod = &ec_GFp_nistp384_mod;
                group->meth->field_mul = &ec_GFp_nistp384_mul;
                group->meth->field_sqr = &ec_GFp_nistp384_sqr;
        }
        return MP_OKAY;
}

Other Java examples (source code examples)

Here is a short list of links related to this Java ecp_384.c source code file:

... this post is sponsored by my books ...

#1 New Release!

FP Best Seller

 

new blog posts

 

Copyright 1998-2024 Alvin Alexander, alvinalexander.com
All Rights Reserved.

A percentage of advertising revenue from
pages under the /java/jwarehouse URI on this website is
paid back to open source projects.