alvinalexander.com | career | drupal | java | mac | mysql | perl | scala | uml | unix  

Java example source code file (ecp_jac.c)

This example Java source code file (ecp_jac.c) is included in the alvinalexander.com "Java Source Code Warehouse" project. The intent of this project is to help you "Learn Java by Example" TM.

Learn more about this Java project at its project page.

Java - Java tags/keywords

argchk, cleanup, ecgroup, flag, mp_badarg, mp_checkok, mp_digits, mp_get_bit, mp_okay, mp_yes, null

The ecp_jac.c Java example source code

/*
 * Copyright (c) 2007, 2011, Oracle and/or its affiliates. All rights reserved.
 * Use is subject to license terms.
 *
 * This library is free software; you can redistribute it and/or
 * modify it under the terms of the GNU Lesser General Public
 * License as published by the Free Software Foundation; either
 * version 2.1 of the License, or (at your option) any later version.
 *
 * This library is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
 * Lesser General Public License for more details.
 *
 * You should have received a copy of the GNU Lesser General Public License
 * along with this library; if not, write to the Free Software Foundation,
 * Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
 *
 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
 * or visit www.oracle.com if you need additional information or have any
 * questions.
 */

/* *********************************************************************
 *
 * The Original Code is the elliptic curve math library for prime field curves.
 *
 * The Initial Developer of the Original Code is
 * Sun Microsystems, Inc.
 * Portions created by the Initial Developer are Copyright (C) 2003
 * the Initial Developer. All Rights Reserved.
 *
 * Contributor(s):
 *   Sheueling Chang-Shantz <sheueling.chang@sun.com>,
 *   Stephen Fung <fungstep@hotmail.com>, and
 *   Douglas Stebila <douglas@stebila.ca>, Sun Microsystems Laboratories.
 *   Bodo Moeller <moeller@cdc.informatik.tu-darmstadt.de>,
 *   Nils Larsch <nla@trustcenter.de>, and
 *   Lenka Fibikova <fibikova@exp-math.uni-essen.de>, the OpenSSL Project
 *
 *********************************************************************** */

#include "ecp.h"
#include "mplogic.h"
#ifndef _KERNEL
#include <stdlib.h>
#endif
#ifdef ECL_DEBUG
#include <assert.h>
#endif

/* Converts a point P(px, py) from affine coordinates to Jacobian
 * projective coordinates R(rx, ry, rz). Assumes input is already
 * field-encoded using field_enc, and returns output that is still
 * field-encoded. */
mp_err
ec_GFp_pt_aff2jac(const mp_int *px, const mp_int *py, mp_int *rx,
                                  mp_int *ry, mp_int *rz, const ECGroup *group)
{
        mp_err res = MP_OKAY;

        if (ec_GFp_pt_is_inf_aff(px, py) == MP_YES) {
                MP_CHECKOK(ec_GFp_pt_set_inf_jac(rx, ry, rz));
        } else {
                MP_CHECKOK(mp_copy(px, rx));
                MP_CHECKOK(mp_copy(py, ry));
                MP_CHECKOK(mp_set_int(rz, 1));
                if (group->meth->field_enc) {
                        MP_CHECKOK(group->meth->field_enc(rz, rz, group->meth));
                }
        }
  CLEANUP:
        return res;
}

/* Converts a point P(px, py, pz) from Jacobian projective coordinates to
 * affine coordinates R(rx, ry).  P and R can share x and y coordinates.
 * Assumes input is already field-encoded using field_enc, and returns
 * output that is still field-encoded. */
mp_err
ec_GFp_pt_jac2aff(const mp_int *px, const mp_int *py, const mp_int *pz,
                                  mp_int *rx, mp_int *ry, const ECGroup *group)
{
        mp_err res = MP_OKAY;
        mp_int z1, z2, z3;

        MP_DIGITS(&z1) = 0;
        MP_DIGITS(&z2) = 0;
        MP_DIGITS(&z3) = 0;
        MP_CHECKOK(mp_init(&z1, FLAG(px)));
        MP_CHECKOK(mp_init(&z2, FLAG(px)));
        MP_CHECKOK(mp_init(&z3, FLAG(px)));

        /* if point at infinity, then set point at infinity and exit */
        if (ec_GFp_pt_is_inf_jac(px, py, pz) == MP_YES) {
                MP_CHECKOK(ec_GFp_pt_set_inf_aff(rx, ry));
                goto CLEANUP;
        }

        /* transform (px, py, pz) into (px / pz^2, py / pz^3) */
        if (mp_cmp_d(pz, 1) == 0) {
                MP_CHECKOK(mp_copy(px, rx));
                MP_CHECKOK(mp_copy(py, ry));
        } else {
                MP_CHECKOK(group->meth->field_div(NULL, pz, &z1, group->meth));
                MP_CHECKOK(group->meth->field_sqr(&z1, &z2, group->meth));
                MP_CHECKOK(group->meth->field_mul(&z1, &z2, &z3, group->meth));
                MP_CHECKOK(group->meth->field_mul(px, &z2, rx, group->meth));
                MP_CHECKOK(group->meth->field_mul(py, &z3, ry, group->meth));
        }

  CLEANUP:
        mp_clear(&z1);
        mp_clear(&z2);
        mp_clear(&z3);
        return res;
}

/* Checks if point P(px, py, pz) is at infinity. Uses Jacobian
 * coordinates. */
mp_err
ec_GFp_pt_is_inf_jac(const mp_int *px, const mp_int *py, const mp_int *pz)
{
        return mp_cmp_z(pz);
}

/* Sets P(px, py, pz) to be the point at infinity.  Uses Jacobian
 * coordinates. */
mp_err
ec_GFp_pt_set_inf_jac(mp_int *px, mp_int *py, mp_int *pz)
{
        mp_zero(pz);
        return MP_OKAY;
}

/* Computes R = P + Q where R is (rx, ry, rz), P is (px, py, pz) and Q is
 * (qx, qy, 1).  Elliptic curve points P, Q, and R can all be identical.
 * Uses mixed Jacobian-affine coordinates. Assumes input is already
 * field-encoded using field_enc, and returns output that is still
 * field-encoded. Uses equation (2) from Brown, Hankerson, Lopez, and
 * Menezes. Software Implementation of the NIST Elliptic Curves Over Prime
 * Fields. */
mp_err
ec_GFp_pt_add_jac_aff(const mp_int *px, const mp_int *py, const mp_int *pz,
                                          const mp_int *qx, const mp_int *qy, mp_int *rx,
                                          mp_int *ry, mp_int *rz, const ECGroup *group)
{
        mp_err res = MP_OKAY;
        mp_int A, B, C, D, C2, C3;

        MP_DIGITS(&A) = 0;
        MP_DIGITS(&B) = 0;
        MP_DIGITS(&C) = 0;
        MP_DIGITS(&D) = 0;
        MP_DIGITS(&C2) = 0;
        MP_DIGITS(&C3) = 0;
        MP_CHECKOK(mp_init(&A, FLAG(px)));
        MP_CHECKOK(mp_init(&B, FLAG(px)));
        MP_CHECKOK(mp_init(&C, FLAG(px)));
        MP_CHECKOK(mp_init(&D, FLAG(px)));
        MP_CHECKOK(mp_init(&C2, FLAG(px)));
        MP_CHECKOK(mp_init(&C3, FLAG(px)));

        /* If either P or Q is the point at infinity, then return the other
         * point */
        if (ec_GFp_pt_is_inf_jac(px, py, pz) == MP_YES) {
                MP_CHECKOK(ec_GFp_pt_aff2jac(qx, qy, rx, ry, rz, group));
                goto CLEANUP;
        }
        if (ec_GFp_pt_is_inf_aff(qx, qy) == MP_YES) {
                MP_CHECKOK(mp_copy(px, rx));
                MP_CHECKOK(mp_copy(py, ry));
                MP_CHECKOK(mp_copy(pz, rz));
                goto CLEANUP;
        }

        /* A = qx * pz^2, B = qy * pz^3 */
        MP_CHECKOK(group->meth->field_sqr(pz, &A, group->meth));
        MP_CHECKOK(group->meth->field_mul(&A, pz, &B, group->meth));
        MP_CHECKOK(group->meth->field_mul(&A, qx, &A, group->meth));
        MP_CHECKOK(group->meth->field_mul(&B, qy, &B, group->meth));

        /* C = A - px, D = B - py */
        MP_CHECKOK(group->meth->field_sub(&A, px, &C, group->meth));
        MP_CHECKOK(group->meth->field_sub(&B, py, &D, group->meth));

        /* C2 = C^2, C3 = C^3 */
        MP_CHECKOK(group->meth->field_sqr(&C, &C2, group->meth));
        MP_CHECKOK(group->meth->field_mul(&C, &C2, &C3, group->meth));

        /* rz = pz * C */
        MP_CHECKOK(group->meth->field_mul(pz, &C, rz, group->meth));

        /* C = px * C^2 */
        MP_CHECKOK(group->meth->field_mul(px, &C2, &C, group->meth));
        /* A = D^2 */
        MP_CHECKOK(group->meth->field_sqr(&D, &A, group->meth));

        /* rx = D^2 - (C^3 + 2 * (px * C^2)) */
        MP_CHECKOK(group->meth->field_add(&C, &C, rx, group->meth));
        MP_CHECKOK(group->meth->field_add(&C3, rx, rx, group->meth));
        MP_CHECKOK(group->meth->field_sub(&A, rx, rx, group->meth));

        /* C3 = py * C^3 */
        MP_CHECKOK(group->meth->field_mul(py, &C3, &C3, group->meth));

        /* ry = D * (px * C^2 - rx) - py * C^3 */
        MP_CHECKOK(group->meth->field_sub(&C, rx, ry, group->meth));
        MP_CHECKOK(group->meth->field_mul(&D, ry, ry, group->meth));
        MP_CHECKOK(group->meth->field_sub(ry, &C3, ry, group->meth));

  CLEANUP:
        mp_clear(&A);
        mp_clear(&B);
        mp_clear(&C);
        mp_clear(&D);
        mp_clear(&C2);
        mp_clear(&C3);
        return res;
}

/* Computes R = 2P.  Elliptic curve points P and R can be identical.  Uses
 * Jacobian coordinates.
 *
 * Assumes input is already field-encoded using field_enc, and returns
 * output that is still field-encoded.
 *
 * This routine implements Point Doubling in the Jacobian Projective
 * space as described in the paper "Efficient elliptic curve exponentiation
 * using mixed coordinates", by H. Cohen, A Miyaji, T. Ono.
 */
mp_err
ec_GFp_pt_dbl_jac(const mp_int *px, const mp_int *py, const mp_int *pz,
                                  mp_int *rx, mp_int *ry, mp_int *rz, const ECGroup *group)
{
        mp_err res = MP_OKAY;
        mp_int t0, t1, M, S;

        MP_DIGITS(&t0) = 0;
        MP_DIGITS(&t1) = 0;
        MP_DIGITS(&M) = 0;
        MP_DIGITS(&S) = 0;
        MP_CHECKOK(mp_init(&t0, FLAG(px)));
        MP_CHECKOK(mp_init(&t1, FLAG(px)));
        MP_CHECKOK(mp_init(&M, FLAG(px)));
        MP_CHECKOK(mp_init(&S, FLAG(px)));

        if (ec_GFp_pt_is_inf_jac(px, py, pz) == MP_YES) {
                MP_CHECKOK(ec_GFp_pt_set_inf_jac(rx, ry, rz));
                goto CLEANUP;
        }

        if (mp_cmp_d(pz, 1) == 0) {
                /* M = 3 * px^2 + a */
                MP_CHECKOK(group->meth->field_sqr(px, &t0, group->meth));
                MP_CHECKOK(group->meth->field_add(&t0, &t0, &M, group->meth));
                MP_CHECKOK(group->meth->field_add(&t0, &M, &t0, group->meth));
                MP_CHECKOK(group->meth->
                                   field_add(&t0, &group->curvea, &M, group->meth));
        } else if (mp_cmp_int(&group->curvea, -3, FLAG(px)) == 0) {
                /* M = 3 * (px + pz^2) * (px - pz^2) */
                MP_CHECKOK(group->meth->field_sqr(pz, &M, group->meth));
                MP_CHECKOK(group->meth->field_add(px, &M, &t0, group->meth));
                MP_CHECKOK(group->meth->field_sub(px, &M, &t1, group->meth));
                MP_CHECKOK(group->meth->field_mul(&t0, &t1, &M, group->meth));
                MP_CHECKOK(group->meth->field_add(&M, &M, &t0, group->meth));
                MP_CHECKOK(group->meth->field_add(&t0, &M, &M, group->meth));
        } else {
                /* M = 3 * (px^2) + a * (pz^4) */
                MP_CHECKOK(group->meth->field_sqr(px, &t0, group->meth));
                MP_CHECKOK(group->meth->field_add(&t0, &t0, &M, group->meth));
                MP_CHECKOK(group->meth->field_add(&t0, &M, &t0, group->meth));
                MP_CHECKOK(group->meth->field_sqr(pz, &M, group->meth));
                MP_CHECKOK(group->meth->field_sqr(&M, &M, group->meth));
                MP_CHECKOK(group->meth->
                                   field_mul(&M, &group->curvea, &M, group->meth));
                MP_CHECKOK(group->meth->field_add(&M, &t0, &M, group->meth));
        }

        /* rz = 2 * py * pz */
        /* t0 = 4 * py^2 */
        if (mp_cmp_d(pz, 1) == 0) {
                MP_CHECKOK(group->meth->field_add(py, py, rz, group->meth));
                MP_CHECKOK(group->meth->field_sqr(rz, &t0, group->meth));
        } else {
                MP_CHECKOK(group->meth->field_add(py, py, &t0, group->meth));
                MP_CHECKOK(group->meth->field_mul(&t0, pz, rz, group->meth));
                MP_CHECKOK(group->meth->field_sqr(&t0, &t0, group->meth));
        }

        /* S = 4 * px * py^2 = px * (2 * py)^2 */
        MP_CHECKOK(group->meth->field_mul(px, &t0, &S, group->meth));

        /* rx = M^2 - 2 * S */
        MP_CHECKOK(group->meth->field_add(&S, &S, &t1, group->meth));
        MP_CHECKOK(group->meth->field_sqr(&M, rx, group->meth));
        MP_CHECKOK(group->meth->field_sub(rx, &t1, rx, group->meth));

        /* ry = M * (S - rx) - 8 * py^4 */
        MP_CHECKOK(group->meth->field_sqr(&t0, &t1, group->meth));
        if (mp_isodd(&t1)) {
                MP_CHECKOK(mp_add(&t1, &group->meth->irr, &t1));
        }
        MP_CHECKOK(mp_div_2(&t1, &t1));
        MP_CHECKOK(group->meth->field_sub(&S, rx, &S, group->meth));
        MP_CHECKOK(group->meth->field_mul(&M, &S, &M, group->meth));
        MP_CHECKOK(group->meth->field_sub(&M, &t1, ry, group->meth));

  CLEANUP:
        mp_clear(&t0);
        mp_clear(&t1);
        mp_clear(&M);
        mp_clear(&S);
        return res;
}

/* by default, this routine is unused and thus doesn't need to be compiled */
#ifdef ECL_ENABLE_GFP_PT_MUL_JAC
/* Computes R = nP where R is (rx, ry) and P is (px, py). The parameters
 * a, b and p are the elliptic curve coefficients and the prime that
 * determines the field GFp.  Elliptic curve points P and R can be
 * identical.  Uses mixed Jacobian-affine coordinates. Assumes input is
 * already field-encoded using field_enc, and returns output that is still
 * field-encoded. Uses 4-bit window method. */
mp_err
ec_GFp_pt_mul_jac(const mp_int *n, const mp_int *px, const mp_int *py,
                                  mp_int *rx, mp_int *ry, const ECGroup *group)
{
        mp_err res = MP_OKAY;
        mp_int precomp[16][2], rz;
        int i, ni, d;

        MP_DIGITS(&rz) = 0;
        for (i = 0; i < 16; i++) {
                MP_DIGITS(&precomp[i][0]) = 0;
                MP_DIGITS(&precomp[i][1]) = 0;
        }

        ARGCHK(group != NULL, MP_BADARG);
        ARGCHK((n != NULL) && (px != NULL) && (py != NULL), MP_BADARG);

        /* initialize precomputation table */
        for (i = 0; i < 16; i++) {
                MP_CHECKOK(mp_init(&precomp[i][0]));
                MP_CHECKOK(mp_init(&precomp[i][1]));
        }

        /* fill precomputation table */
        mp_zero(&precomp[0][0]);
        mp_zero(&precomp[0][1]);
        MP_CHECKOK(mp_copy(px, &precomp[1][0]));
        MP_CHECKOK(mp_copy(py, &precomp[1][1]));
        for (i = 2; i < 16; i++) {
                MP_CHECKOK(group->
                                   point_add(&precomp[1][0], &precomp[1][1],
                                                         &precomp[i - 1][0], &precomp[i - 1][1],
                                                         &precomp[i][0], &precomp[i][1], group));
        }

        d = (mpl_significant_bits(n) + 3) / 4;

        /* R = inf */
        MP_CHECKOK(mp_init(&rz));
        MP_CHECKOK(ec_GFp_pt_set_inf_jac(rx, ry, &rz));

        for (i = d - 1; i >= 0; i--) {
                /* compute window ni */
                ni = MP_GET_BIT(n, 4 * i + 3);
                ni <<= 1;
                ni |= MP_GET_BIT(n, 4 * i + 2);
                ni <<= 1;
                ni |= MP_GET_BIT(n, 4 * i + 1);
                ni <<= 1;
                ni |= MP_GET_BIT(n, 4 * i);
                /* R = 2^4 * R */
                MP_CHECKOK(ec_GFp_pt_dbl_jac(rx, ry, &rz, rx, ry, &rz, group));
                MP_CHECKOK(ec_GFp_pt_dbl_jac(rx, ry, &rz, rx, ry, &rz, group));
                MP_CHECKOK(ec_GFp_pt_dbl_jac(rx, ry, &rz, rx, ry, &rz, group));
                MP_CHECKOK(ec_GFp_pt_dbl_jac(rx, ry, &rz, rx, ry, &rz, group));
                /* R = R + (ni * P) */
                MP_CHECKOK(ec_GFp_pt_add_jac_aff
                                   (rx, ry, &rz, &precomp[ni][0], &precomp[ni][1], rx, ry,
                                        &rz, group));
        }

        /* convert result S to affine coordinates */
        MP_CHECKOK(ec_GFp_pt_jac2aff(rx, ry, &rz, rx, ry, group));

  CLEANUP:
        mp_clear(&rz);
        for (i = 0; i < 16; i++) {
                mp_clear(&precomp[i][0]);
                mp_clear(&precomp[i][1]);
        }
        return res;
}
#endif

/* Elliptic curve scalar-point multiplication. Computes R(x, y) = k1 * G +
 * k2 * P(x, y), where G is the generator (base point) of the group of
 * points on the elliptic curve. Allows k1 = NULL or { k2, P } = NULL.
 * Uses mixed Jacobian-affine coordinates. Input and output values are
 * assumed to be NOT field-encoded. Uses algorithm 15 (simultaneous
 * multiple point multiplication) from Brown, Hankerson, Lopez, Menezes.
 * Software Implementation of the NIST Elliptic Curves over Prime Fields. */
mp_err
ec_GFp_pts_mul_jac(const mp_int *k1, const mp_int *k2, const mp_int *px,
                                   const mp_int *py, mp_int *rx, mp_int *ry,
                                   const ECGroup *group)
{
        mp_err res = MP_OKAY;
        mp_int precomp[4][4][2];
        mp_int rz;
        const mp_int *a, *b;
        int i, j;
        int ai, bi, d;

        for (i = 0; i < 4; i++) {
                for (j = 0; j < 4; j++) {
                        MP_DIGITS(&precomp[i][j][0]) = 0;
                        MP_DIGITS(&precomp[i][j][1]) = 0;
                }
        }
        MP_DIGITS(&rz) = 0;

        ARGCHK(group != NULL, MP_BADARG);
        ARGCHK(!((k1 == NULL)
                         && ((k2 == NULL) || (px == NULL)
                                 || (py == NULL))), MP_BADARG);

        /* if some arguments are not defined used ECPoint_mul */
        if (k1 == NULL) {
                return ECPoint_mul(group, k2, px, py, rx, ry);
        } else if ((k2 == NULL) || (px == NULL) || (py == NULL)) {
                return ECPoint_mul(group, k1, NULL, NULL, rx, ry);
        }

        /* initialize precomputation table */
        for (i = 0; i < 4; i++) {
                for (j = 0; j < 4; j++) {
                        MP_CHECKOK(mp_init(&precomp[i][j][0], FLAG(k1)));
                        MP_CHECKOK(mp_init(&precomp[i][j][1], FLAG(k1)));
                }
        }

        /* fill precomputation table */
        /* assign {k1, k2} = {a, b} such that len(a) >= len(b) */
        if (mpl_significant_bits(k1) < mpl_significant_bits(k2)) {
                a = k2;
                b = k1;
                if (group->meth->field_enc) {
                        MP_CHECKOK(group->meth->
                                           field_enc(px, &precomp[1][0][0], group->meth));
                        MP_CHECKOK(group->meth->
                                           field_enc(py, &precomp[1][0][1], group->meth));
                } else {
                        MP_CHECKOK(mp_copy(px, &precomp[1][0][0]));
                        MP_CHECKOK(mp_copy(py, &precomp[1][0][1]));
                }
                MP_CHECKOK(mp_copy(&group->genx, &precomp[0][1][0]));
                MP_CHECKOK(mp_copy(&group->geny, &precomp[0][1][1]));
        } else {
                a = k1;
                b = k2;
                MP_CHECKOK(mp_copy(&group->genx, &precomp[1][0][0]));
                MP_CHECKOK(mp_copy(&group->geny, &precomp[1][0][1]));
                if (group->meth->field_enc) {
                        MP_CHECKOK(group->meth->
                                           field_enc(px, &precomp[0][1][0], group->meth));
                        MP_CHECKOK(group->meth->
                                           field_enc(py, &precomp[0][1][1], group->meth));
                } else {
                        MP_CHECKOK(mp_copy(px, &precomp[0][1][0]));
                        MP_CHECKOK(mp_copy(py, &precomp[0][1][1]));
                }
        }
        /* precompute [*][0][*] */
        mp_zero(&precomp[0][0][0]);
        mp_zero(&precomp[0][0][1]);
        MP_CHECKOK(group->
                           point_dbl(&precomp[1][0][0], &precomp[1][0][1],
                                                 &precomp[2][0][0], &precomp[2][0][1], group));
        MP_CHECKOK(group->
                           point_add(&precomp[1][0][0], &precomp[1][0][1],
                                                 &precomp[2][0][0], &precomp[2][0][1],
                                                 &precomp[3][0][0], &precomp[3][0][1], group));
        /* precompute [*][1][*] */
        for (i = 1; i < 4; i++) {
                MP_CHECKOK(group->
                                   point_add(&precomp[0][1][0], &precomp[0][1][1],
                                                         &precomp[i][0][0], &precomp[i][0][1],
                                                         &precomp[i][1][0], &precomp[i][1][1], group));
        }
        /* precompute [*][2][*] */
        MP_CHECKOK(group->
                           point_dbl(&precomp[0][1][0], &precomp[0][1][1],
                                                 &precomp[0][2][0], &precomp[0][2][1], group));
        for (i = 1; i < 4; i++) {
                MP_CHECKOK(group->
                                   point_add(&precomp[0][2][0], &precomp[0][2][1],
                                                         &precomp[i][0][0], &precomp[i][0][1],
                                                         &precomp[i][2][0], &precomp[i][2][1], group));
        }
        /* precompute [*][3][*] */
        MP_CHECKOK(group->
                           point_add(&precomp[0][1][0], &precomp[0][1][1],
                                                 &precomp[0][2][0], &precomp[0][2][1],
                                                 &precomp[0][3][0], &precomp[0][3][1], group));
        for (i = 1; i < 4; i++) {
                MP_CHECKOK(group->
                                   point_add(&precomp[0][3][0], &precomp[0][3][1],
                                                         &precomp[i][0][0], &precomp[i][0][1],
                                                         &precomp[i][3][0], &precomp[i][3][1], group));
        }

        d = (mpl_significant_bits(a) + 1) / 2;

        /* R = inf */
        MP_CHECKOK(mp_init(&rz, FLAG(k1)));
        MP_CHECKOK(ec_GFp_pt_set_inf_jac(rx, ry, &rz));

        for (i = d - 1; i >= 0; i--) {
                ai = MP_GET_BIT(a, 2 * i + 1);
                ai <<= 1;
                ai |= MP_GET_BIT(a, 2 * i);
                bi = MP_GET_BIT(b, 2 * i + 1);
                bi <<= 1;
                bi |= MP_GET_BIT(b, 2 * i);
                /* R = 2^2 * R */
                MP_CHECKOK(ec_GFp_pt_dbl_jac(rx, ry, &rz, rx, ry, &rz, group));
                MP_CHECKOK(ec_GFp_pt_dbl_jac(rx, ry, &rz, rx, ry, &rz, group));
                /* R = R + (ai * A + bi * B) */
                MP_CHECKOK(ec_GFp_pt_add_jac_aff
                                   (rx, ry, &rz, &precomp[ai][bi][0], &precomp[ai][bi][1],
                                        rx, ry, &rz, group));
        }

        MP_CHECKOK(ec_GFp_pt_jac2aff(rx, ry, &rz, rx, ry, group));

        if (group->meth->field_dec) {
                MP_CHECKOK(group->meth->field_dec(rx, rx, group->meth));
                MP_CHECKOK(group->meth->field_dec(ry, ry, group->meth));
        }

  CLEANUP:
        mp_clear(&rz);
        for (i = 0; i < 4; i++) {
                for (j = 0; j < 4; j++) {
                        mp_clear(&precomp[i][j][0]);
                        mp_clear(&precomp[i][j][1]);
                }
        }
        return res;
}

Other Java examples (source code examples)

Here is a short list of links related to this Java ecp_jac.c source code file:

... this post is sponsored by my books ...

#1 New Release!

FP Best Seller

 

new blog posts

 

Copyright 1998-2024 Alvin Alexander, alvinalexander.com
All Rights Reserved.

A percentage of advertising revenue from
pages under the /java/jwarehouse URI on this website is
paid back to open source projects.