alvinalexander.com | career | drupal | java | mac | mysql | perl | scala | uml | unix  

Java example source code file (ecp_jm.c)

This example Java source code file (ecp_jm.c) is included in the alvinalexander.com "Java Source Code Warehouse" project. The intent of this project is to help you "Learn Java by Example" TM.

Learn more about this Java project at its project page.

Java - Java tags/keywords

cleanup, ecgroup, flag, max_scratch, mp_checkok, mp_digits, mp_okay, mp_yes, null

The ecp_jm.c Java example source code

/*
 * Copyright (c) 2007, 2011, Oracle and/or its affiliates. All rights reserved.
 * Use is subject to license terms.
 *
 * This library is free software; you can redistribute it and/or
 * modify it under the terms of the GNU Lesser General Public
 * License as published by the Free Software Foundation; either
 * version 2.1 of the License, or (at your option) any later version.
 *
 * This library is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
 * Lesser General Public License for more details.
 *
 * You should have received a copy of the GNU Lesser General Public License
 * along with this library; if not, write to the Free Software Foundation,
 * Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
 *
 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
 * or visit www.oracle.com if you need additional information or have any
 * questions.
 */

/* *********************************************************************
 *
 * The Original Code is the elliptic curve math library for prime field curves.
 *
 * The Initial Developer of the Original Code is
 * Sun Microsystems, Inc.
 * Portions created by the Initial Developer are Copyright (C) 2003
 * the Initial Developer. All Rights Reserved.
 *
 * Contributor(s):
 *   Stephen Fung <fungstep@hotmail.com>, Sun Microsystems Laboratories
 *
 *********************************************************************** */

#include "ecp.h"
#include "ecl-priv.h"
#include "mplogic.h"
#ifndef _KERNEL
#include <stdlib.h>
#endif

#define MAX_SCRATCH 6

/* Computes R = 2P.  Elliptic curve points P and R can be identical.  Uses
 * Modified Jacobian coordinates.
 *
 * Assumes input is already field-encoded using field_enc, and returns
 * output that is still field-encoded.
 *
 */
mp_err
ec_GFp_pt_dbl_jm(const mp_int *px, const mp_int *py, const mp_int *pz,
                                 const mp_int *paz4, mp_int *rx, mp_int *ry, mp_int *rz,
                                 mp_int *raz4, mp_int scratch[], const ECGroup *group)
{
        mp_err res = MP_OKAY;
        mp_int *t0, *t1, *M, *S;

        t0 = &scratch[0];
        t1 = &scratch[1];
        M = &scratch[2];
        S = &scratch[3];

#if MAX_SCRATCH < 4
#error "Scratch array defined too small "
#endif

        /* Check for point at infinity */
        if (ec_GFp_pt_is_inf_jac(px, py, pz) == MP_YES) {
                /* Set r = pt at infinity by setting rz = 0 */

                MP_CHECKOK(ec_GFp_pt_set_inf_jac(rx, ry, rz));
                goto CLEANUP;
        }

        /* M = 3 (px^2) + a*(pz^4) */
        MP_CHECKOK(group->meth->field_sqr(px, t0, group->meth));
        MP_CHECKOK(group->meth->field_add(t0, t0, M, group->meth));
        MP_CHECKOK(group->meth->field_add(t0, M, t0, group->meth));
        MP_CHECKOK(group->meth->field_add(t0, paz4, M, group->meth));

        /* rz = 2 * py * pz */
        MP_CHECKOK(group->meth->field_mul(py, pz, S, group->meth));
        MP_CHECKOK(group->meth->field_add(S, S, rz, group->meth));

        /* t0 = 2y^2 , t1 = 8y^4 */
        MP_CHECKOK(group->meth->field_sqr(py, t0, group->meth));
        MP_CHECKOK(group->meth->field_add(t0, t0, t0, group->meth));
        MP_CHECKOK(group->meth->field_sqr(t0, t1, group->meth));
        MP_CHECKOK(group->meth->field_add(t1, t1, t1, group->meth));

        /* S = 4 * px * py^2 = 2 * px * t0 */
        MP_CHECKOK(group->meth->field_mul(px, t0, S, group->meth));
        MP_CHECKOK(group->meth->field_add(S, S, S, group->meth));


        /* rx = M^2 - 2S */
        MP_CHECKOK(group->meth->field_sqr(M, rx, group->meth));
        MP_CHECKOK(group->meth->field_sub(rx, S, rx, group->meth));
        MP_CHECKOK(group->meth->field_sub(rx, S, rx, group->meth));

        /* ry = M * (S - rx) - t1 */
        MP_CHECKOK(group->meth->field_sub(S, rx, S, group->meth));
        MP_CHECKOK(group->meth->field_mul(S, M, ry, group->meth));
        MP_CHECKOK(group->meth->field_sub(ry, t1, ry, group->meth));

        /* ra*z^4 = 2*t1*(apz4) */
        MP_CHECKOK(group->meth->field_mul(paz4, t1, raz4, group->meth));
        MP_CHECKOK(group->meth->field_add(raz4, raz4, raz4, group->meth));


  CLEANUP:
        return res;
}

/* Computes R = P + Q where R is (rx, ry, rz), P is (px, py, pz) and Q is
 * (qx, qy, 1).  Elliptic curve points P, Q, and R can all be identical.
 * Uses mixed Modified_Jacobian-affine coordinates. Assumes input is
 * already field-encoded using field_enc, and returns output that is still
 * field-encoded. */
mp_err
ec_GFp_pt_add_jm_aff(const mp_int *px, const mp_int *py, const mp_int *pz,
                                         const mp_int *paz4, const mp_int *qx,
                                         const mp_int *qy, mp_int *rx, mp_int *ry, mp_int *rz,
                                         mp_int *raz4, mp_int scratch[], const ECGroup *group)
{
        mp_err res = MP_OKAY;
        mp_int *A, *B, *C, *D, *C2, *C3;

        A = &scratch[0];
        B = &scratch[1];
        C = &scratch[2];
        D = &scratch[3];
        C2 = &scratch[4];
        C3 = &scratch[5];

#if MAX_SCRATCH < 6
#error "Scratch array defined too small "
#endif

        /* If either P or Q is the point at infinity, then return the other
         * point */
        if (ec_GFp_pt_is_inf_jac(px, py, pz) == MP_YES) {
                MP_CHECKOK(ec_GFp_pt_aff2jac(qx, qy, rx, ry, rz, group));
                MP_CHECKOK(group->meth->field_sqr(rz, raz4, group->meth));
                MP_CHECKOK(group->meth->field_sqr(raz4, raz4, group->meth));
                MP_CHECKOK(group->meth->
                                   field_mul(raz4, &group->curvea, raz4, group->meth));
                goto CLEANUP;
        }
        if (ec_GFp_pt_is_inf_aff(qx, qy) == MP_YES) {
                MP_CHECKOK(mp_copy(px, rx));
                MP_CHECKOK(mp_copy(py, ry));
                MP_CHECKOK(mp_copy(pz, rz));
                MP_CHECKOK(mp_copy(paz4, raz4));
                goto CLEANUP;
        }

        /* A = qx * pz^2, B = qy * pz^3 */
        MP_CHECKOK(group->meth->field_sqr(pz, A, group->meth));
        MP_CHECKOK(group->meth->field_mul(A, pz, B, group->meth));
        MP_CHECKOK(group->meth->field_mul(A, qx, A, group->meth));
        MP_CHECKOK(group->meth->field_mul(B, qy, B, group->meth));

        /* C = A - px, D = B - py */
        MP_CHECKOK(group->meth->field_sub(A, px, C, group->meth));
        MP_CHECKOK(group->meth->field_sub(B, py, D, group->meth));

        /* C2 = C^2, C3 = C^3 */
        MP_CHECKOK(group->meth->field_sqr(C, C2, group->meth));
        MP_CHECKOK(group->meth->field_mul(C, C2, C3, group->meth));

        /* rz = pz * C */
        MP_CHECKOK(group->meth->field_mul(pz, C, rz, group->meth));

        /* C = px * C^2 */
        MP_CHECKOK(group->meth->field_mul(px, C2, C, group->meth));
        /* A = D^2 */
        MP_CHECKOK(group->meth->field_sqr(D, A, group->meth));

        /* rx = D^2 - (C^3 + 2 * (px * C^2)) */
        MP_CHECKOK(group->meth->field_add(C, C, rx, group->meth));
        MP_CHECKOK(group->meth->field_add(C3, rx, rx, group->meth));
        MP_CHECKOK(group->meth->field_sub(A, rx, rx, group->meth));

        /* C3 = py * C^3 */
        MP_CHECKOK(group->meth->field_mul(py, C3, C3, group->meth));

        /* ry = D * (px * C^2 - rx) - py * C^3 */
        MP_CHECKOK(group->meth->field_sub(C, rx, ry, group->meth));
        MP_CHECKOK(group->meth->field_mul(D, ry, ry, group->meth));
        MP_CHECKOK(group->meth->field_sub(ry, C3, ry, group->meth));

        /* raz4 = a * rz^4 */
        MP_CHECKOK(group->meth->field_sqr(rz, raz4, group->meth));
        MP_CHECKOK(group->meth->field_sqr(raz4, raz4, group->meth));
        MP_CHECKOK(group->meth->
                           field_mul(raz4, &group->curvea, raz4, group->meth));
CLEANUP:
        return res;
}

/* Computes R = nP where R is (rx, ry) and P is the base point. Elliptic
 * curve points P and R can be identical. Uses mixed Modified-Jacobian
 * co-ordinates for doubling and Chudnovsky Jacobian coordinates for
 * additions. Assumes input is already field-encoded using field_enc, and
 * returns output that is still field-encoded. Uses 5-bit window NAF
 * method (algorithm 11) for scalar-point multiplication from Brown,
 * Hankerson, Lopez, Menezes. Software Implementation of the NIST Elliptic
 * Curves Over Prime Fields. */
mp_err
ec_GFp_pt_mul_jm_wNAF(const mp_int *n, const mp_int *px, const mp_int *py,
                                          mp_int *rx, mp_int *ry, const ECGroup *group)
{
        mp_err res = MP_OKAY;
        mp_int precomp[16][2], rz, tpx, tpy;
        mp_int raz4;
        mp_int scratch[MAX_SCRATCH];
        signed char *naf = NULL;
        int i, orderBitSize;

        MP_DIGITS(&rz) = 0;
        MP_DIGITS(&raz4) = 0;
        MP_DIGITS(&tpx) = 0;
        MP_DIGITS(&tpy) = 0;
        for (i = 0; i < 16; i++) {
                MP_DIGITS(&precomp[i][0]) = 0;
                MP_DIGITS(&precomp[i][1]) = 0;
        }
        for (i = 0; i < MAX_SCRATCH; i++) {
                MP_DIGITS(&scratch[i]) = 0;
        }

        ARGCHK(group != NULL, MP_BADARG);
        ARGCHK((n != NULL) && (px != NULL) && (py != NULL), MP_BADARG);

        /* initialize precomputation table */
        MP_CHECKOK(mp_init(&tpx, FLAG(n)));
        MP_CHECKOK(mp_init(&tpy, FLAG(n)));;
        MP_CHECKOK(mp_init(&rz, FLAG(n)));
        MP_CHECKOK(mp_init(&raz4, FLAG(n)));

        for (i = 0; i < 16; i++) {
                MP_CHECKOK(mp_init(&precomp[i][0], FLAG(n)));
                MP_CHECKOK(mp_init(&precomp[i][1], FLAG(n)));
        }
        for (i = 0; i < MAX_SCRATCH; i++) {
                MP_CHECKOK(mp_init(&scratch[i], FLAG(n)));
        }

        /* Set out[8] = P */
        MP_CHECKOK(mp_copy(px, &precomp[8][0]));
        MP_CHECKOK(mp_copy(py, &precomp[8][1]));

        /* Set (tpx, tpy) = 2P */
        MP_CHECKOK(group->
                           point_dbl(&precomp[8][0], &precomp[8][1], &tpx, &tpy,
                                                 group));

        /* Set 3P, 5P, ..., 15P */
        for (i = 8; i < 15; i++) {
                MP_CHECKOK(group->
                                   point_add(&precomp[i][0], &precomp[i][1], &tpx, &tpy,
                                                         &precomp[i + 1][0], &precomp[i + 1][1],
                                                         group));
        }

        /* Set -15P, -13P, ..., -P */
        for (i = 0; i < 8; i++) {
                MP_CHECKOK(mp_copy(&precomp[15 - i][0], &precomp[i][0]));
                MP_CHECKOK(group->meth->
                                   field_neg(&precomp[15 - i][1], &precomp[i][1],
                                                         group->meth));
        }

        /* R = inf */
        MP_CHECKOK(ec_GFp_pt_set_inf_jac(rx, ry, &rz));

        orderBitSize = mpl_significant_bits(&group->order);

        /* Allocate memory for NAF */
#ifdef _KERNEL
        naf = (signed char *) kmem_alloc((orderBitSize + 1), FLAG(n));
#else
        naf = (signed char *) malloc(sizeof(signed char) * (orderBitSize + 1));
        if (naf == NULL) {
                res = MP_MEM;
                goto CLEANUP;
        }
#endif

        /* Compute 5NAF */
        ec_compute_wNAF(naf, orderBitSize, n, 5);

        /* wNAF method */
        for (i = orderBitSize; i >= 0; i--) {
                /* R = 2R */
                ec_GFp_pt_dbl_jm(rx, ry, &rz, &raz4, rx, ry, &rz,
                                             &raz4, scratch, group);
                if (naf[i] != 0) {
                        ec_GFp_pt_add_jm_aff(rx, ry, &rz, &raz4,
                                                                 &precomp[(naf[i] + 15) / 2][0],
                                                                 &precomp[(naf[i] + 15) / 2][1], rx, ry,
                                                                 &rz, &raz4, scratch, group);
                }
        }

        /* convert result S to affine coordinates */
        MP_CHECKOK(ec_GFp_pt_jac2aff(rx, ry, &rz, rx, ry, group));

  CLEANUP:
        for (i = 0; i < MAX_SCRATCH; i++) {
                mp_clear(&scratch[i]);
        }
        for (i = 0; i < 16; i++) {
                mp_clear(&precomp[i][0]);
                mp_clear(&precomp[i][1]);
        }
        mp_clear(&tpx);
        mp_clear(&tpy);
        mp_clear(&rz);
        mp_clear(&raz4);
#ifdef _KERNEL
        kmem_free(naf, (orderBitSize + 1));
#else
        free(naf);
#endif
        return res;
}

Other Java examples (source code examples)

Here is a short list of links related to this Java ecp_jm.c source code file:

... this post is sponsored by my books ...

#1 New Release!

FP Best Seller

 

new blog posts

 

Copyright 1998-2024 Alvin Alexander, alvinalexander.com
All Rights Reserved.

A percentage of advertising revenue from
pages under the /java/jwarehouse URI on this website is
paid back to open source projects.