|
Java example source code file (ecp_mont.c)
The ecp_mont.c Java example source code/* * Copyright (c) 2007, 2011, Oracle and/or its affiliates. All rights reserved. * Use is subject to license terms. * * This library is free software; you can redistribute it and/or * modify it under the terms of the GNU Lesser General Public * License as published by the Free Software Foundation; either * version 2.1 of the License, or (at your option) any later version. * * This library is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * Lesser General Public License for more details. * * You should have received a copy of the GNU Lesser General Public License * along with this library; if not, write to the Free Software Foundation, * Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA. * * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA * or visit www.oracle.com if you need additional information or have any * questions. */ /* ********************************************************************* * * The Original Code is the elliptic curve math library. * * The Initial Developer of the Original Code is * Sun Microsystems, Inc. * Portions created by the Initial Developer are Copyright (C) 2003 * the Initial Developer. All Rights Reserved. * * Contributor(s): * Douglas Stebila <douglas@stebila.ca>, Sun Microsystems Laboratories * *********************************************************************** */ /* Uses Montgomery reduction for field arithmetic. See mpi/mpmontg.c for * code implementation. */ #include "mpi.h" #include "mplogic.h" #include "mpi-priv.h" #include "ecl-priv.h" #include "ecp.h" #ifndef _KERNEL #include <stdlib.h> #include <stdio.h> #endif /* Construct a generic GFMethod for arithmetic over prime fields with * irreducible irr. */ GFMethod * GFMethod_consGFp_mont(const mp_int *irr) { mp_err res = MP_OKAY; int i; GFMethod *meth = NULL; mp_mont_modulus *mmm; meth = GFMethod_consGFp(irr); if (meth == NULL) return NULL; #ifdef _KERNEL mmm = (mp_mont_modulus *) kmem_alloc(sizeof(mp_mont_modulus), FLAG(irr)); #else mmm = (mp_mont_modulus *) malloc(sizeof(mp_mont_modulus)); #endif if (mmm == NULL) { res = MP_MEM; goto CLEANUP; } meth->field_mul = &ec_GFp_mul_mont; meth->field_sqr = &ec_GFp_sqr_mont; meth->field_div = &ec_GFp_div_mont; meth->field_enc = &ec_GFp_enc_mont; meth->field_dec = &ec_GFp_dec_mont; meth->extra1 = mmm; meth->extra2 = NULL; meth->extra_free = &ec_GFp_extra_free_mont; mmm->N = meth->irr; i = mpl_significant_bits(&meth->irr); i += MP_DIGIT_BIT - 1; mmm->b = i - i % MP_DIGIT_BIT; mmm->n0prime = 0 - s_mp_invmod_radix(MP_DIGIT(&meth->irr, 0)); CLEANUP: if (res != MP_OKAY) { GFMethod_free(meth); return NULL; } return meth; } /* Wrapper functions for generic prime field arithmetic. */ /* Field multiplication using Montgomery reduction. */ mp_err ec_GFp_mul_mont(const mp_int *a, const mp_int *b, mp_int *r, const GFMethod *meth) { mp_err res = MP_OKAY; #ifdef MP_MONT_USE_MP_MUL /* if MP_MONT_USE_MP_MUL is defined, then the function s_mp_mul_mont * is not implemented and we have to use mp_mul and s_mp_redc directly */ MP_CHECKOK(mp_mul(a, b, r)); MP_CHECKOK(s_mp_redc(r, (mp_mont_modulus *) meth->extra1)); #else mp_int s; MP_DIGITS(&s) = 0; /* s_mp_mul_mont doesn't allow source and destination to be the same */ if ((a == r) || (b == r)) { MP_CHECKOK(mp_init(&s, FLAG(a))); MP_CHECKOK(s_mp_mul_mont (a, b, &s, (mp_mont_modulus *) meth->extra1)); MP_CHECKOK(mp_copy(&s, r)); mp_clear(&s); } else { return s_mp_mul_mont(a, b, r, (mp_mont_modulus *) meth->extra1); } #endif CLEANUP: return res; } /* Field squaring using Montgomery reduction. */ mp_err ec_GFp_sqr_mont(const mp_int *a, mp_int *r, const GFMethod *meth) { return ec_GFp_mul_mont(a, a, r, meth); } /* Field division using Montgomery reduction. */ mp_err ec_GFp_div_mont(const mp_int *a, const mp_int *b, mp_int *r, const GFMethod *meth) { mp_err res = MP_OKAY; /* if A=aZ represents a encoded in montgomery coordinates with Z and # * and \ respectively represent multiplication and division in * montgomery coordinates, then A\B = (a/b)Z = (A/B)Z and Binv = * (1/b)Z = (1/B)(Z^2) where B # Binv = Z */ MP_CHECKOK(ec_GFp_div(a, b, r, meth)); MP_CHECKOK(ec_GFp_enc_mont(r, r, meth)); if (a == NULL) { MP_CHECKOK(ec_GFp_enc_mont(r, r, meth)); } CLEANUP: return res; } /* Encode a field element in Montgomery form. See s_mp_to_mont in * mpi/mpmontg.c */ mp_err ec_GFp_enc_mont(const mp_int *a, mp_int *r, const GFMethod *meth) { mp_mont_modulus *mmm; mp_err res = MP_OKAY; mmm = (mp_mont_modulus *) meth->extra1; MP_CHECKOK(mpl_lsh(a, r, mmm->b)); MP_CHECKOK(mp_mod(r, &mmm->N, r)); CLEANUP: return res; } /* Decode a field element from Montgomery form. */ mp_err ec_GFp_dec_mont(const mp_int *a, mp_int *r, const GFMethod *meth) { mp_err res = MP_OKAY; if (a != r) { MP_CHECKOK(mp_copy(a, r)); } MP_CHECKOK(s_mp_redc(r, (mp_mont_modulus *) meth->extra1)); CLEANUP: return res; } /* Free the memory allocated to the extra fields of Montgomery GFMethod * object. */ void ec_GFp_extra_free_mont(GFMethod *meth) { if (meth->extra1 != NULL) { #ifdef _KERNEL kmem_free(meth->extra1, sizeof(mp_mont_modulus)); #else free(meth->extra1); #endif meth->extra1 = NULL; } } Other Java examples (source code examples)Here is a short list of links related to this Java ecp_mont.c source code file: |
... this post is sponsored by my books ... | |
#1 New Release! |
FP Best Seller |
Copyright 1998-2024 Alvin Alexander, alvinalexander.com
All Rights Reserved.
A percentage of advertising revenue from
pages under the /java/jwarehouse
URI on this website is
paid back to open source projects.