alvinalexander.com | career | drupal | java | mac | mysql | perl | scala | uml | unix  

Java example source code file (ecp_mont.c)

This example Java source code file (ecp_mont.c) is included in the alvinalexander.com "Java Source Code Warehouse" project. The intent of this project is to help you "Learn Java by Example" TM.

Learn more about this Java project at its project page.

Java - Java tags/keywords

cleanup, flag, gfmethod, gfmethod_consgfp_mont, gfmethod_free, mp_checkok, mp_digit_bit, mp_digits, mp_mem, mp_mont_use_mp_mul, mp_okay, null

The ecp_mont.c Java example source code

/*
 * Copyright (c) 2007, 2011, Oracle and/or its affiliates. All rights reserved.
 * Use is subject to license terms.
 *
 * This library is free software; you can redistribute it and/or
 * modify it under the terms of the GNU Lesser General Public
 * License as published by the Free Software Foundation; either
 * version 2.1 of the License, or (at your option) any later version.
 *
 * This library is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
 * Lesser General Public License for more details.
 *
 * You should have received a copy of the GNU Lesser General Public License
 * along with this library; if not, write to the Free Software Foundation,
 * Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
 *
 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
 * or visit www.oracle.com if you need additional information or have any
 * questions.
 */

/* *********************************************************************
 *
 * The Original Code is the elliptic curve math library.
 *
 * The Initial Developer of the Original Code is
 * Sun Microsystems, Inc.
 * Portions created by the Initial Developer are Copyright (C) 2003
 * the Initial Developer. All Rights Reserved.
 *
 * Contributor(s):
 *   Douglas Stebila <douglas@stebila.ca>, Sun Microsystems Laboratories
 *
 *********************************************************************** */

/* Uses Montgomery reduction for field arithmetic.  See mpi/mpmontg.c for
 * code implementation. */

#include "mpi.h"
#include "mplogic.h"
#include "mpi-priv.h"
#include "ecl-priv.h"
#include "ecp.h"
#ifndef _KERNEL
#include <stdlib.h>
#include <stdio.h>
#endif

/* Construct a generic GFMethod for arithmetic over prime fields with
 * irreducible irr. */
GFMethod *
GFMethod_consGFp_mont(const mp_int *irr)
{
        mp_err res = MP_OKAY;
        int i;
        GFMethod *meth = NULL;
        mp_mont_modulus *mmm;

        meth = GFMethod_consGFp(irr);
        if (meth == NULL)
                return NULL;

#ifdef _KERNEL
        mmm = (mp_mont_modulus *) kmem_alloc(sizeof(mp_mont_modulus),
            FLAG(irr));
#else
        mmm = (mp_mont_modulus *) malloc(sizeof(mp_mont_modulus));
#endif
        if (mmm == NULL) {
                res = MP_MEM;
                goto CLEANUP;
        }

        meth->field_mul = &ec_GFp_mul_mont;
        meth->field_sqr = &ec_GFp_sqr_mont;
        meth->field_div = &ec_GFp_div_mont;
        meth->field_enc = &ec_GFp_enc_mont;
        meth->field_dec = &ec_GFp_dec_mont;
        meth->extra1 = mmm;
        meth->extra2 = NULL;
        meth->extra_free = &ec_GFp_extra_free_mont;

        mmm->N = meth->irr;
        i = mpl_significant_bits(&meth->irr);
        i += MP_DIGIT_BIT - 1;
        mmm->b = i - i % MP_DIGIT_BIT;
        mmm->n0prime = 0 - s_mp_invmod_radix(MP_DIGIT(&meth->irr, 0));

  CLEANUP:
        if (res != MP_OKAY) {
                GFMethod_free(meth);
                return NULL;
        }
        return meth;
}

/* Wrapper functions for generic prime field arithmetic. */

/* Field multiplication using Montgomery reduction. */
mp_err
ec_GFp_mul_mont(const mp_int *a, const mp_int *b, mp_int *r,
                                const GFMethod *meth)
{
        mp_err res = MP_OKAY;

#ifdef MP_MONT_USE_MP_MUL
        /* if MP_MONT_USE_MP_MUL is defined, then the function s_mp_mul_mont
         * is not implemented and we have to use mp_mul and s_mp_redc directly
         */
        MP_CHECKOK(mp_mul(a, b, r));
        MP_CHECKOK(s_mp_redc(r, (mp_mont_modulus *) meth->extra1));
#else
        mp_int s;

        MP_DIGITS(&s) = 0;
        /* s_mp_mul_mont doesn't allow source and destination to be the same */
        if ((a == r) || (b == r)) {
                MP_CHECKOK(mp_init(&s, FLAG(a)));
                MP_CHECKOK(s_mp_mul_mont
                                   (a, b, &s, (mp_mont_modulus *) meth->extra1));
                MP_CHECKOK(mp_copy(&s, r));
                mp_clear(&s);
        } else {
                return s_mp_mul_mont(a, b, r, (mp_mont_modulus *) meth->extra1);
        }
#endif
  CLEANUP:
        return res;
}

/* Field squaring using Montgomery reduction. */
mp_err
ec_GFp_sqr_mont(const mp_int *a, mp_int *r, const GFMethod *meth)
{
        return ec_GFp_mul_mont(a, a, r, meth);
}

/* Field division using Montgomery reduction. */
mp_err
ec_GFp_div_mont(const mp_int *a, const mp_int *b, mp_int *r,
                                const GFMethod *meth)
{
        mp_err res = MP_OKAY;

        /* if A=aZ represents a encoded in montgomery coordinates with Z and #
         * and \ respectively represent multiplication and division in
         * montgomery coordinates, then A\B = (a/b)Z = (A/B)Z and Binv =
         * (1/b)Z = (1/B)(Z^2) where B # Binv = Z */
        MP_CHECKOK(ec_GFp_div(a, b, r, meth));
        MP_CHECKOK(ec_GFp_enc_mont(r, r, meth));
        if (a == NULL) {
                MP_CHECKOK(ec_GFp_enc_mont(r, r, meth));
        }
  CLEANUP:
        return res;
}

/* Encode a field element in Montgomery form. See s_mp_to_mont in
 * mpi/mpmontg.c */
mp_err
ec_GFp_enc_mont(const mp_int *a, mp_int *r, const GFMethod *meth)
{
        mp_mont_modulus *mmm;
        mp_err res = MP_OKAY;

        mmm = (mp_mont_modulus *) meth->extra1;
        MP_CHECKOK(mpl_lsh(a, r, mmm->b));
        MP_CHECKOK(mp_mod(r, &mmm->N, r));
  CLEANUP:
        return res;
}

/* Decode a field element from Montgomery form. */
mp_err
ec_GFp_dec_mont(const mp_int *a, mp_int *r, const GFMethod *meth)
{
        mp_err res = MP_OKAY;

        if (a != r) {
                MP_CHECKOK(mp_copy(a, r));
        }
        MP_CHECKOK(s_mp_redc(r, (mp_mont_modulus *) meth->extra1));
  CLEANUP:
        return res;
}

/* Free the memory allocated to the extra fields of Montgomery GFMethod
 * object. */
void
ec_GFp_extra_free_mont(GFMethod *meth)
{
        if (meth->extra1 != NULL) {
#ifdef _KERNEL
                kmem_free(meth->extra1, sizeof(mp_mont_modulus));
#else
                free(meth->extra1);
#endif
                meth->extra1 = NULL;
        }
}

Other Java examples (source code examples)

Here is a short list of links related to this Java ecp_mont.c source code file:

... this post is sponsored by my books ...

#1 New Release!

FP Best Seller

 

new blog posts

 

Copyright 1998-2024 Alvin Alexander, alvinalexander.com
All Rights Reserved.

A percentage of advertising revenue from
pages under the /java/jwarehouse URI on this website is
paid back to open source projects.