|
Java example source code file (mp_gf2m.c)
The mp_gf2m.c Java example source code/* * Copyright (c) 2007, 2011, Oracle and/or its affiliates. All rights reserved. * Use is subject to license terms. * * This library is free software; you can redistribute it and/or * modify it under the terms of the GNU Lesser General Public * License as published by the Free Software Foundation; either * version 2.1 of the License, or (at your option) any later version. * * This library is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * Lesser General Public License for more details. * * You should have received a copy of the GNU Lesser General Public License * along with this library; if not, write to the Free Software Foundation, * Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA. * * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA * or visit www.oracle.com if you need additional information or have any * questions. */ /* ********************************************************************* * * The Original Code is the Multi-precision Binary Polynomial Arithmetic Library. * * The Initial Developer of the Original Code is * Sun Microsystems, Inc. * Portions created by the Initial Developer are Copyright (C) 2003 * the Initial Developer. All Rights Reserved. * * Contributor(s): * Sheueling Chang Shantz <sheueling.chang@sun.com> and * Douglas Stebila <douglas@stebila.ca> of Sun Laboratories. * *********************************************************************** */ #include "mp_gf2m.h" #include "mp_gf2m-priv.h" #include "mplogic.h" #include "mpi-priv.h" const mp_digit mp_gf2m_sqr_tb[16] = { 0, 1, 4, 5, 16, 17, 20, 21, 64, 65, 68, 69, 80, 81, 84, 85 }; /* Multiply two binary polynomials mp_digits a, b. * Result is a polynomial with degree < 2 * MP_DIGIT_BITS - 1. * Output in two mp_digits rh, rl. */ #if MP_DIGIT_BITS == 32 void s_bmul_1x1(mp_digit *rh, mp_digit *rl, const mp_digit a, const mp_digit b) { register mp_digit h, l, s; mp_digit tab[8], top2b = a >> 30; register mp_digit a1, a2, a4; a1 = a & (0x3FFFFFFF); a2 = a1 << 1; a4 = a2 << 1; tab[0] = 0; tab[1] = a1; tab[2] = a2; tab[3] = a1^a2; tab[4] = a4; tab[5] = a1^a4; tab[6] = a2^a4; tab[7] = a1^a2^a4; s = tab[b & 0x7]; l = s; s = tab[b >> 3 & 0x7]; l ^= s << 3; h = s >> 29; s = tab[b >> 6 & 0x7]; l ^= s << 6; h ^= s >> 26; s = tab[b >> 9 & 0x7]; l ^= s << 9; h ^= s >> 23; s = tab[b >> 12 & 0x7]; l ^= s << 12; h ^= s >> 20; s = tab[b >> 15 & 0x7]; l ^= s << 15; h ^= s >> 17; s = tab[b >> 18 & 0x7]; l ^= s << 18; h ^= s >> 14; s = tab[b >> 21 & 0x7]; l ^= s << 21; h ^= s >> 11; s = tab[b >> 24 & 0x7]; l ^= s << 24; h ^= s >> 8; s = tab[b >> 27 & 0x7]; l ^= s << 27; h ^= s >> 5; s = tab[b >> 30 ]; l ^= s << 30; h ^= s >> 2; /* compensate for the top two bits of a */ if (top2b & 01) { l ^= b << 30; h ^= b >> 2; } if (top2b & 02) { l ^= b << 31; h ^= b >> 1; } *rh = h; *rl = l; } #else void s_bmul_1x1(mp_digit *rh, mp_digit *rl, const mp_digit a, const mp_digit b) { register mp_digit h, l, s; mp_digit tab[16], top3b = a >> 61; register mp_digit a1, a2, a4, a8; a1 = a & (0x1FFFFFFFFFFFFFFFULL); a2 = a1 << 1; a4 = a2 << 1; a8 = a4 << 1; tab[ 0] = 0; tab[ 1] = a1; tab[ 2] = a2; tab[ 3] = a1^a2; tab[ 4] = a4; tab[ 5] = a1^a4; tab[ 6] = a2^a4; tab[ 7] = a1^a2^a4; tab[ 8] = a8; tab[ 9] = a1^a8; tab[10] = a2^a8; tab[11] = a1^a2^a8; tab[12] = a4^a8; tab[13] = a1^a4^a8; tab[14] = a2^a4^a8; tab[15] = a1^a2^a4^a8; s = tab[b & 0xF]; l = s; s = tab[b >> 4 & 0xF]; l ^= s << 4; h = s >> 60; s = tab[b >> 8 & 0xF]; l ^= s << 8; h ^= s >> 56; s = tab[b >> 12 & 0xF]; l ^= s << 12; h ^= s >> 52; s = tab[b >> 16 & 0xF]; l ^= s << 16; h ^= s >> 48; s = tab[b >> 20 & 0xF]; l ^= s << 20; h ^= s >> 44; s = tab[b >> 24 & 0xF]; l ^= s << 24; h ^= s >> 40; s = tab[b >> 28 & 0xF]; l ^= s << 28; h ^= s >> 36; s = tab[b >> 32 & 0xF]; l ^= s << 32; h ^= s >> 32; s = tab[b >> 36 & 0xF]; l ^= s << 36; h ^= s >> 28; s = tab[b >> 40 & 0xF]; l ^= s << 40; h ^= s >> 24; s = tab[b >> 44 & 0xF]; l ^= s << 44; h ^= s >> 20; s = tab[b >> 48 & 0xF]; l ^= s << 48; h ^= s >> 16; s = tab[b >> 52 & 0xF]; l ^= s << 52; h ^= s >> 12; s = tab[b >> 56 & 0xF]; l ^= s << 56; h ^= s >> 8; s = tab[b >> 60 ]; l ^= s << 60; h ^= s >> 4; /* compensate for the top three bits of a */ if (top3b & 01) { l ^= b << 61; h ^= b >> 3; } if (top3b & 02) { l ^= b << 62; h ^= b >> 2; } if (top3b & 04) { l ^= b << 63; h ^= b >> 1; } *rh = h; *rl = l; } #endif /* Compute xor-multiply of two binary polynomials (a1, a0) x (b1, b0) * result is a binary polynomial in 4 mp_digits r[4]. * The caller MUST ensure that r has the right amount of space allocated. */ void s_bmul_2x2(mp_digit *r, const mp_digit a1, const mp_digit a0, const mp_digit b1, const mp_digit b0) { mp_digit m1, m0; /* r[3] = h1, r[2] = h0; r[1] = l1; r[0] = l0 */ s_bmul_1x1(r+3, r+2, a1, b1); s_bmul_1x1(r+1, r, a0, b0); s_bmul_1x1(&m1, &m0, a0 ^ a1, b0 ^ b1); /* Correction on m1 ^= l1 ^ h1; m0 ^= l0 ^ h0; */ r[2] ^= m1 ^ r[1] ^ r[3]; /* h0 ^= m1 ^ l1 ^ h1; */ r[1] = r[3] ^ r[2] ^ r[0] ^ m1 ^ m0; /* l1 ^= l0 ^ h0 ^ m0; */ } /* Compute xor-multiply of two binary polynomials (a2, a1, a0) x (b2, b1, b0) * result is a binary polynomial in 6 mp_digits r[6]. * The caller MUST ensure that r has the right amount of space allocated. */ void s_bmul_3x3(mp_digit *r, const mp_digit a2, const mp_digit a1, const mp_digit a0, const mp_digit b2, const mp_digit b1, const mp_digit b0) { mp_digit zm[4]; s_bmul_1x1(r+5, r+4, a2, b2); /* fill top 2 words */ s_bmul_2x2(zm, a1, a2^a0, b1, b2^b0); /* fill middle 4 words */ s_bmul_2x2(r, a1, a0, b1, b0); /* fill bottom 4 words */ zm[3] ^= r[3]; zm[2] ^= r[2]; zm[1] ^= r[1] ^ r[5]; zm[0] ^= r[0] ^ r[4]; r[5] ^= zm[3]; r[4] ^= zm[2]; r[3] ^= zm[1]; r[2] ^= zm[0]; } /* Compute xor-multiply of two binary polynomials (a3, a2, a1, a0) x (b3, b2, b1, b0) * result is a binary polynomial in 8 mp_digits r[8]. * The caller MUST ensure that r has the right amount of space allocated. */ void s_bmul_4x4(mp_digit *r, const mp_digit a3, const mp_digit a2, const mp_digit a1, const mp_digit a0, const mp_digit b3, const mp_digit b2, const mp_digit b1, const mp_digit b0) { mp_digit zm[4]; s_bmul_2x2(r+4, a3, a2, b3, b2); /* fill top 4 words */ s_bmul_2x2(zm, a3^a1, a2^a0, b3^b1, b2^b0); /* fill middle 4 words */ s_bmul_2x2(r, a1, a0, b1, b0); /* fill bottom 4 words */ zm[3] ^= r[3] ^ r[7]; zm[2] ^= r[2] ^ r[6]; zm[1] ^= r[1] ^ r[5]; zm[0] ^= r[0] ^ r[4]; r[5] ^= zm[3]; r[4] ^= zm[2]; r[3] ^= zm[1]; r[2] ^= zm[0]; } /* Compute addition of two binary polynomials a and b, * store result in c; c could be a or b, a and b could be equal; * c is the bitwise XOR of a and b. */ mp_err mp_badd(const mp_int *a, const mp_int *b, mp_int *c) { mp_digit *pa, *pb, *pc; mp_size ix; mp_size used_pa, used_pb; mp_err res = MP_OKAY; /* Add all digits up to the precision of b. If b had more * precision than a initially, swap a, b first */ if (MP_USED(a) >= MP_USED(b)) { pa = MP_DIGITS(a); pb = MP_DIGITS(b); used_pa = MP_USED(a); used_pb = MP_USED(b); } else { pa = MP_DIGITS(b); pb = MP_DIGITS(a); used_pa = MP_USED(b); used_pb = MP_USED(a); } /* Make sure c has enough precision for the output value */ MP_CHECKOK( s_mp_pad(c, used_pa) ); /* Do word-by-word xor */ pc = MP_DIGITS(c); for (ix = 0; ix < used_pb; ix++) { (*pc++) = (*pa++) ^ (*pb++); } /* Finish the rest of digits until we're actually done */ for (; ix < used_pa; ++ix) { *pc++ = *pa++; } MP_USED(c) = used_pa; MP_SIGN(c) = ZPOS; s_mp_clamp(c); CLEANUP: return res; } #define s_mp_div2(a) MP_CHECKOK( mpl_rsh((a), (a), 1) ); /* Compute binary polynomial multiply d = a * b */ static void s_bmul_d(const mp_digit *a, mp_size a_len, mp_digit b, mp_digit *d) { mp_digit a_i, a0b0, a1b1, carry = 0; while (a_len--) { a_i = *a++; s_bmul_1x1(&a1b1, &a0b0, a_i, b); *d++ = a0b0 ^ carry; carry = a1b1; } *d = carry; } /* Compute binary polynomial xor multiply accumulate d ^= a * b */ static void s_bmul_d_add(const mp_digit *a, mp_size a_len, mp_digit b, mp_digit *d) { mp_digit a_i, a0b0, a1b1, carry = 0; while (a_len--) { a_i = *a++; s_bmul_1x1(&a1b1, &a0b0, a_i, b); *d++ ^= a0b0 ^ carry; carry = a1b1; } *d ^= carry; } /* Compute binary polynomial xor multiply c = a * b. * All parameters may be identical. */ mp_err mp_bmul(const mp_int *a, const mp_int *b, mp_int *c) { mp_digit *pb, b_i; mp_int tmp; mp_size ib, a_used, b_used; mp_err res = MP_OKAY; MP_DIGITS(&tmp) = 0; ARGCHK(a != NULL && b != NULL && c != NULL, MP_BADARG); if (a == c) { MP_CHECKOK( mp_init_copy(&tmp, a) ); if (a == b) b = &tmp; a = &tmp; } else if (b == c) { MP_CHECKOK( mp_init_copy(&tmp, b) ); b = &tmp; } if (MP_USED(a) < MP_USED(b)) { const mp_int *xch = b; /* switch a and b if b longer */ b = a; a = xch; } MP_USED(c) = 1; MP_DIGIT(c, 0) = 0; MP_CHECKOK( s_mp_pad(c, USED(a) + USED(b)) ); pb = MP_DIGITS(b); s_bmul_d(MP_DIGITS(a), MP_USED(a), *pb++, MP_DIGITS(c)); /* Outer loop: Digits of b */ a_used = MP_USED(a); b_used = MP_USED(b); MP_USED(c) = a_used + b_used; for (ib = 1; ib < b_used; ib++) { b_i = *pb++; /* Inner product: Digits of a */ if (b_i) s_bmul_d_add(MP_DIGITS(a), a_used, b_i, MP_DIGITS(c) + ib); else MP_DIGIT(c, ib + a_used) = b_i; } s_mp_clamp(c); SIGN(c) = ZPOS; CLEANUP: mp_clear(&tmp); return res; } /* Compute modular reduction of a and store result in r. * r could be a. * For modular arithmetic, the irreducible polynomial f(t) is represented * as an array of int[], where f(t) is of the form: * f(t) = t^p[0] + t^p[1] + ... + t^p[k] * where m = p[0] > p[1] > ... > p[k] = 0. */ mp_err mp_bmod(const mp_int *a, const unsigned int p[], mp_int *r) { int j, k; int n, dN, d0, d1; mp_digit zz, *z, tmp; mp_size used; mp_err res = MP_OKAY; /* The algorithm does the reduction in place in r, * if a != r, copy a into r first so reduction can be done in r */ if (a != r) { MP_CHECKOK( mp_copy(a, r) ); } z = MP_DIGITS(r); /* start reduction */ dN = p[0] / MP_DIGIT_BITS; used = MP_USED(r); for (j = used - 1; j > dN;) { zz = z[j]; if (zz == 0) { j--; continue; } z[j] = 0; for (k = 1; p[k] > 0; k++) { /* reducing component t^p[k] */ n = p[0] - p[k]; d0 = n % MP_DIGIT_BITS; d1 = MP_DIGIT_BITS - d0; n /= MP_DIGIT_BITS; z[j-n] ^= (zz>>d0); if (d0) z[j-n-1] ^= (zz< Other Java examples (source code examples)Here is a short list of links related to this Java mp_gf2m.c source code file: |
... this post is sponsored by my books ... | |
#1 New Release! |
FP Best Seller |
Copyright 1998-2024 Alvin Alexander, alvinalexander.com
All Rights Reserved.
A percentage of advertising revenue from
pages under the /java/jwarehouse
URI on this website is
paid back to open source projects.