alvinalexander.com | career | drupal | java | mac | mysql | perl | scala | uml | unix  

Java example source code file (mp_gf2m.c)

This example Java source code file (mp_gf2m.c) is included in the alvinalexander.com "Java Source Code Warehouse" project. The intent of this project is to help you "Learn Java by Example" TM.

Learn more about this Java project at its project page.

Java - Java tags/keywords

argchk, cleanup, mp_badarg, mp_checkok, mp_digit_bits, mp_digits, mp_okay, mp_sign, mp_used, null, sign, zpos

The mp_gf2m.c Java example source code

/*
 * Copyright (c) 2007, 2011, Oracle and/or its affiliates. All rights reserved.
 * Use is subject to license terms.
 *
 * This library is free software; you can redistribute it and/or
 * modify it under the terms of the GNU Lesser General Public
 * License as published by the Free Software Foundation; either
 * version 2.1 of the License, or (at your option) any later version.
 *
 * This library is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
 * Lesser General Public License for more details.
 *
 * You should have received a copy of the GNU Lesser General Public License
 * along with this library; if not, write to the Free Software Foundation,
 * Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
 *
 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
 * or visit www.oracle.com if you need additional information or have any
 * questions.
 */

/* *********************************************************************
 *
 * The Original Code is the Multi-precision Binary Polynomial Arithmetic Library.
 *
 * The Initial Developer of the Original Code is
 * Sun Microsystems, Inc.
 * Portions created by the Initial Developer are Copyright (C) 2003
 * the Initial Developer. All Rights Reserved.
 *
 * Contributor(s):
 *   Sheueling Chang Shantz <sheueling.chang@sun.com> and
 *   Douglas Stebila <douglas@stebila.ca> of Sun Laboratories.
 *
 *********************************************************************** */

#include "mp_gf2m.h"
#include "mp_gf2m-priv.h"
#include "mplogic.h"
#include "mpi-priv.h"

const mp_digit mp_gf2m_sqr_tb[16] =
{
      0,     1,     4,     5,    16,    17,    20,    21,
     64,    65,    68,    69,    80,    81,    84,    85
};

/* Multiply two binary polynomials mp_digits a, b.
 * Result is a polynomial with degree < 2 * MP_DIGIT_BITS - 1.
 * Output in two mp_digits rh, rl.
 */
#if MP_DIGIT_BITS == 32
void
s_bmul_1x1(mp_digit *rh, mp_digit *rl, const mp_digit a, const mp_digit b)
{
    register mp_digit h, l, s;
    mp_digit tab[8], top2b = a >> 30;
    register mp_digit a1, a2, a4;

    a1 = a & (0x3FFFFFFF); a2 = a1 << 1; a4 = a2 << 1;

    tab[0] =  0; tab[1] = a1;    tab[2] = a2;    tab[3] = a1^a2;
    tab[4] = a4; tab[5] = a1^a4; tab[6] = a2^a4; tab[7] = a1^a2^a4;

    s = tab[b       & 0x7]; l  = s;
    s = tab[b >>  3 & 0x7]; l ^= s <<  3; h  = s >> 29;
    s = tab[b >>  6 & 0x7]; l ^= s <<  6; h ^= s >> 26;
    s = tab[b >>  9 & 0x7]; l ^= s <<  9; h ^= s >> 23;
    s = tab[b >> 12 & 0x7]; l ^= s << 12; h ^= s >> 20;
    s = tab[b >> 15 & 0x7]; l ^= s << 15; h ^= s >> 17;
    s = tab[b >> 18 & 0x7]; l ^= s << 18; h ^= s >> 14;
    s = tab[b >> 21 & 0x7]; l ^= s << 21; h ^= s >> 11;
    s = tab[b >> 24 & 0x7]; l ^= s << 24; h ^= s >>  8;
    s = tab[b >> 27 & 0x7]; l ^= s << 27; h ^= s >>  5;
    s = tab[b >> 30      ]; l ^= s << 30; h ^= s >>  2;

    /* compensate for the top two bits of a */

    if (top2b & 01) { l ^= b << 30; h ^= b >> 2; }
    if (top2b & 02) { l ^= b << 31; h ^= b >> 1; }

    *rh = h; *rl = l;
}
#else
void
s_bmul_1x1(mp_digit *rh, mp_digit *rl, const mp_digit a, const mp_digit b)
{
    register mp_digit h, l, s;
    mp_digit tab[16], top3b = a >> 61;
    register mp_digit a1, a2, a4, a8;

    a1 = a & (0x1FFFFFFFFFFFFFFFULL); a2 = a1 << 1;
    a4 = a2 << 1; a8 = a4 << 1;
    tab[ 0] = 0;     tab[ 1] = a1;       tab[ 2] = a2;       tab[ 3] = a1^a2;
    tab[ 4] = a4;    tab[ 5] = a1^a4;    tab[ 6] = a2^a4;    tab[ 7] = a1^a2^a4;
    tab[ 8] = a8;    tab[ 9] = a1^a8;    tab[10] = a2^a8;    tab[11] = a1^a2^a8;
    tab[12] = a4^a8; tab[13] = a1^a4^a8; tab[14] = a2^a4^a8; tab[15] = a1^a2^a4^a8;

    s = tab[b       & 0xF]; l  = s;
    s = tab[b >>  4 & 0xF]; l ^= s <<  4; h  = s >> 60;
    s = tab[b >>  8 & 0xF]; l ^= s <<  8; h ^= s >> 56;
    s = tab[b >> 12 & 0xF]; l ^= s << 12; h ^= s >> 52;
    s = tab[b >> 16 & 0xF]; l ^= s << 16; h ^= s >> 48;
    s = tab[b >> 20 & 0xF]; l ^= s << 20; h ^= s >> 44;
    s = tab[b >> 24 & 0xF]; l ^= s << 24; h ^= s >> 40;
    s = tab[b >> 28 & 0xF]; l ^= s << 28; h ^= s >> 36;
    s = tab[b >> 32 & 0xF]; l ^= s << 32; h ^= s >> 32;
    s = tab[b >> 36 & 0xF]; l ^= s << 36; h ^= s >> 28;
    s = tab[b >> 40 & 0xF]; l ^= s << 40; h ^= s >> 24;
    s = tab[b >> 44 & 0xF]; l ^= s << 44; h ^= s >> 20;
    s = tab[b >> 48 & 0xF]; l ^= s << 48; h ^= s >> 16;
    s = tab[b >> 52 & 0xF]; l ^= s << 52; h ^= s >> 12;
    s = tab[b >> 56 & 0xF]; l ^= s << 56; h ^= s >>  8;
    s = tab[b >> 60      ]; l ^= s << 60; h ^= s >>  4;

    /* compensate for the top three bits of a */

    if (top3b & 01) { l ^= b << 61; h ^= b >> 3; }
    if (top3b & 02) { l ^= b << 62; h ^= b >> 2; }
    if (top3b & 04) { l ^= b << 63; h ^= b >> 1; }

    *rh = h; *rl = l;
}
#endif

/* Compute xor-multiply of two binary polynomials  (a1, a0) x (b1, b0)
 * result is a binary polynomial in 4 mp_digits r[4].
 * The caller MUST ensure that r has the right amount of space allocated.
 */
void
s_bmul_2x2(mp_digit *r, const mp_digit a1, const mp_digit a0, const mp_digit b1,
           const mp_digit b0)
{
    mp_digit m1, m0;
    /* r[3] = h1, r[2] = h0; r[1] = l1; r[0] = l0 */
    s_bmul_1x1(r+3, r+2, a1, b1);
    s_bmul_1x1(r+1, r, a0, b0);
    s_bmul_1x1(&m1, &m0, a0 ^ a1, b0 ^ b1);
    /* Correction on m1 ^= l1 ^ h1; m0 ^= l0 ^ h0; */
    r[2] ^= m1 ^ r[1] ^ r[3];  /* h0 ^= m1 ^ l1 ^ h1; */
    r[1]  = r[3] ^ r[2] ^ r[0] ^ m1 ^ m0;  /* l1 ^= l0 ^ h0 ^ m0; */
}

/* Compute xor-multiply of two binary polynomials  (a2, a1, a0) x (b2, b1, b0)
 * result is a binary polynomial in 6 mp_digits r[6].
 * The caller MUST ensure that r has the right amount of space allocated.
 */
void
s_bmul_3x3(mp_digit *r, const mp_digit a2, const mp_digit a1, const mp_digit a0,
        const mp_digit b2, const mp_digit b1, const mp_digit b0)
{
        mp_digit zm[4];

        s_bmul_1x1(r+5, r+4, a2, b2);         /* fill top 2 words */
        s_bmul_2x2(zm, a1, a2^a0, b1, b2^b0); /* fill middle 4 words */
        s_bmul_2x2(r, a1, a0, b1, b0);        /* fill bottom 4 words */

        zm[3] ^= r[3];
        zm[2] ^= r[2];
        zm[1] ^= r[1] ^ r[5];
        zm[0] ^= r[0] ^ r[4];

        r[5]  ^= zm[3];
        r[4]  ^= zm[2];
        r[3]  ^= zm[1];
        r[2]  ^= zm[0];
}

/* Compute xor-multiply of two binary polynomials  (a3, a2, a1, a0) x (b3, b2, b1, b0)
 * result is a binary polynomial in 8 mp_digits r[8].
 * The caller MUST ensure that r has the right amount of space allocated.
 */
void s_bmul_4x4(mp_digit *r, const mp_digit a3, const mp_digit a2, const mp_digit a1,
        const mp_digit a0, const mp_digit b3, const mp_digit b2, const mp_digit b1,
        const mp_digit b0)
{
        mp_digit zm[4];

        s_bmul_2x2(r+4, a3, a2, b3, b2);            /* fill top 4 words */
        s_bmul_2x2(zm, a3^a1, a2^a0, b3^b1, b2^b0); /* fill middle 4 words */
        s_bmul_2x2(r, a1, a0, b1, b0);              /* fill bottom 4 words */

        zm[3] ^= r[3] ^ r[7];
        zm[2] ^= r[2] ^ r[6];
        zm[1] ^= r[1] ^ r[5];
        zm[0] ^= r[0] ^ r[4];

        r[5]  ^= zm[3];
        r[4]  ^= zm[2];
        r[3]  ^= zm[1];
        r[2]  ^= zm[0];
}

/* Compute addition of two binary polynomials a and b,
 * store result in c; c could be a or b, a and b could be equal;
 * c is the bitwise XOR of a and b.
 */
mp_err
mp_badd(const mp_int *a, const mp_int *b, mp_int *c)
{
    mp_digit *pa, *pb, *pc;
    mp_size ix;
    mp_size used_pa, used_pb;
    mp_err res = MP_OKAY;

    /* Add all digits up to the precision of b.  If b had more
     * precision than a initially, swap a, b first
     */
    if (MP_USED(a) >= MP_USED(b)) {
        pa = MP_DIGITS(a);
        pb = MP_DIGITS(b);
        used_pa = MP_USED(a);
        used_pb = MP_USED(b);
    } else {
        pa = MP_DIGITS(b);
        pb = MP_DIGITS(a);
        used_pa = MP_USED(b);
        used_pb = MP_USED(a);
    }

    /* Make sure c has enough precision for the output value */
    MP_CHECKOK( s_mp_pad(c, used_pa) );

    /* Do word-by-word xor */
    pc = MP_DIGITS(c);
    for (ix = 0; ix < used_pb; ix++) {
        (*pc++) = (*pa++) ^ (*pb++);
    }

    /* Finish the rest of digits until we're actually done */
    for (; ix < used_pa; ++ix) {
        *pc++ = *pa++;
    }

    MP_USED(c) = used_pa;
    MP_SIGN(c) = ZPOS;
    s_mp_clamp(c);

CLEANUP:
    return res;
}

#define s_mp_div2(a) MP_CHECKOK( mpl_rsh((a), (a), 1) );

/* Compute binary polynomial multiply d = a * b */
static void
s_bmul_d(const mp_digit *a, mp_size a_len, mp_digit b, mp_digit *d)
{
    mp_digit a_i, a0b0, a1b1, carry = 0;
    while (a_len--) {
        a_i = *a++;
        s_bmul_1x1(&a1b1, &a0b0, a_i, b);
        *d++ = a0b0 ^ carry;
        carry = a1b1;
    }
    *d = carry;
}

/* Compute binary polynomial xor multiply accumulate d ^= a * b */
static void
s_bmul_d_add(const mp_digit *a, mp_size a_len, mp_digit b, mp_digit *d)
{
    mp_digit a_i, a0b0, a1b1, carry = 0;
    while (a_len--) {
        a_i = *a++;
        s_bmul_1x1(&a1b1, &a0b0, a_i, b);
        *d++ ^= a0b0 ^ carry;
        carry = a1b1;
    }
    *d ^= carry;
}

/* Compute binary polynomial xor multiply c = a * b.
 * All parameters may be identical.
 */
mp_err
mp_bmul(const mp_int *a, const mp_int *b, mp_int *c)
{
    mp_digit *pb, b_i;
    mp_int tmp;
    mp_size ib, a_used, b_used;
    mp_err res = MP_OKAY;

    MP_DIGITS(&tmp) = 0;

    ARGCHK(a != NULL && b != NULL && c != NULL, MP_BADARG);

    if (a == c) {
        MP_CHECKOK( mp_init_copy(&tmp, a) );
        if (a == b)
            b = &tmp;
        a = &tmp;
    } else if (b == c) {
        MP_CHECKOK( mp_init_copy(&tmp, b) );
        b = &tmp;
    }

    if (MP_USED(a) < MP_USED(b)) {
        const mp_int *xch = b;      /* switch a and b if b longer */
        b = a;
        a = xch;
    }

    MP_USED(c) = 1; MP_DIGIT(c, 0) = 0;
    MP_CHECKOK( s_mp_pad(c, USED(a) + USED(b)) );

    pb = MP_DIGITS(b);
    s_bmul_d(MP_DIGITS(a), MP_USED(a), *pb++, MP_DIGITS(c));

    /* Outer loop:  Digits of b */
    a_used = MP_USED(a);
    b_used = MP_USED(b);
        MP_USED(c) = a_used + b_used;
    for (ib = 1; ib < b_used; ib++) {
        b_i = *pb++;

        /* Inner product:  Digits of a */
        if (b_i)
            s_bmul_d_add(MP_DIGITS(a), a_used, b_i, MP_DIGITS(c) + ib);
        else
            MP_DIGIT(c, ib + a_used) = b_i;
    }

    s_mp_clamp(c);

    SIGN(c) = ZPOS;

CLEANUP:
    mp_clear(&tmp);
    return res;
}


/* Compute modular reduction of a and store result in r.
 * r could be a.
 * For modular arithmetic, the irreducible polynomial f(t) is represented
 * as an array of int[], where f(t) is of the form:
 *     f(t) = t^p[0] + t^p[1] + ... + t^p[k]
 * where m = p[0] > p[1] > ... > p[k] = 0.
 */
mp_err
mp_bmod(const mp_int *a, const unsigned int p[], mp_int *r)
{
    int j, k;
    int n, dN, d0, d1;
    mp_digit zz, *z, tmp;
    mp_size used;
    mp_err res = MP_OKAY;

    /* The algorithm does the reduction in place in r,
     * if a != r, copy a into r first so reduction can be done in r
     */
    if (a != r) {
        MP_CHECKOK( mp_copy(a, r) );
    }
    z = MP_DIGITS(r);

    /* start reduction */
    dN = p[0] / MP_DIGIT_BITS;
    used = MP_USED(r);

    for (j = used - 1; j > dN;) {

        zz = z[j];
        if (zz == 0) {
            j--; continue;
        }
        z[j] = 0;

        for (k = 1; p[k] > 0; k++) {
            /* reducing component t^p[k] */
            n = p[0] - p[k];
            d0 = n % MP_DIGIT_BITS;
            d1 = MP_DIGIT_BITS - d0;
            n /= MP_DIGIT_BITS;
            z[j-n] ^= (zz>>d0);
            if (d0)
                z[j-n-1] ^= (zz< d0);
        if (d0)
            z[j-n-1] ^= (zz << d1);

    }

    /* final round of reduction */
    while (j == dN) {

        d0 = p[0] % MP_DIGIT_BITS;
        zz = z[dN] >> d0;
        if (zz == 0) break;
        d1 = MP_DIGIT_BITS - d0;

        /* clear up the top d1 bits */
        if (d0) z[dN] = (z[dN] << d1) >> d1;
        *z ^= zz; /* reduction t^0 component */

        for (k = 1; p[k] > 0; k++) {
            /* reducing component t^p[k]*/
            n = p[k] / MP_DIGIT_BITS;
            d0 = p[k] % MP_DIGIT_BITS;
            d1 = MP_DIGIT_BITS - d0;
            z[n] ^= (zz << d0);
            tmp = zz >> d1;
            if (d0 && tmp)
                z[n+1] ^= tmp;
        }
    }

    s_mp_clamp(r);
CLEANUP:
    return res;
}

/* Compute the product of two polynomials a and b, reduce modulo p,
 * Store the result in r.  r could be a or b; a could be b.
 */
mp_err
mp_bmulmod(const mp_int *a, const mp_int *b, const unsigned int p[], mp_int *r)
{
    mp_err res;

    if (a == b) return mp_bsqrmod(a, p, r);
    if ((res = mp_bmul(a, b, r) ) != MP_OKAY)
        return res;
    return mp_bmod(r, p, r);
}

/* Compute binary polynomial squaring c = a*a mod p .
 * Parameter r and a can be identical.
 */

mp_err
mp_bsqrmod(const mp_int *a, const unsigned int p[], mp_int *r)
{
    mp_digit *pa, *pr, a_i;
    mp_int tmp;
    mp_size ia, a_used;
    mp_err res;

    ARGCHK(a != NULL && r != NULL, MP_BADARG);
    MP_DIGITS(&tmp) = 0;

    if (a == r) {
        MP_CHECKOK( mp_init_copy(&tmp, a) );
        a = &tmp;
    }

    MP_USED(r) = 1; MP_DIGIT(r, 0) = 0;
    MP_CHECKOK( s_mp_pad(r, 2*USED(a)) );

    pa = MP_DIGITS(a);
    pr = MP_DIGITS(r);
    a_used = MP_USED(a);
        MP_USED(r) = 2 * a_used;

    for (ia = 0; ia < a_used; ia++) {
        a_i = *pa++;
        *pr++ = gf2m_SQR0(a_i);
        *pr++ = gf2m_SQR1(a_i);
    }

    MP_CHECKOK( mp_bmod(r, p, r) );
    s_mp_clamp(r);
    SIGN(r) = ZPOS;

CLEANUP:
    mp_clear(&tmp);
    return res;
}

/* Compute binary polynomial y/x mod p, y divided by x, reduce modulo p.
 * Store the result in r. r could be x or y, and x could equal y.
 * Uses algorithm Modular_Division_GF(2^m) from
 *     Chang-Shantz, S.  "From Euclid's GCD to Montgomery Multiplication to
 *     the Great Divide".
 */
int
mp_bdivmod(const mp_int *y, const mp_int *x, const mp_int *pp,
    const unsigned int p[], mp_int *r)
{
    mp_int aa, bb, uu;
    mp_int *a, *b, *u, *v;
    mp_err res = MP_OKAY;

    MP_DIGITS(&aa) = 0;
    MP_DIGITS(&bb) = 0;
    MP_DIGITS(&uu) = 0;

    MP_CHECKOK( mp_init_copy(&aa, x) );
    MP_CHECKOK( mp_init_copy(&uu, y) );
    MP_CHECKOK( mp_init_copy(&bb, pp) );
    MP_CHECKOK( s_mp_pad(r, USED(pp)) );
    MP_USED(r) = 1; MP_DIGIT(r, 0) = 0;

    a = &aa; b= &bb; u=&uu; v=r;
    /* reduce x and y mod p */
    MP_CHECKOK( mp_bmod(a, p, a) );
    MP_CHECKOK( mp_bmod(u, p, u) );

    while (!mp_isodd(a)) {
        s_mp_div2(a);
        if (mp_isodd(u)) {
            MP_CHECKOK( mp_badd(u, pp, u) );
        }
        s_mp_div2(u);
    }

    do {
        if (mp_cmp_mag(b, a) > 0) {
            MP_CHECKOK( mp_badd(b, a, b) );
            MP_CHECKOK( mp_badd(v, u, v) );
            do {
                s_mp_div2(b);
                if (mp_isodd(v)) {
                    MP_CHECKOK( mp_badd(v, pp, v) );
                }
                s_mp_div2(v);
            } while (!mp_isodd(b));
        }
        else if ((MP_DIGIT(a,0) == 1) && (MP_USED(a) == 1))
            break;
        else {
            MP_CHECKOK( mp_badd(a, b, a) );
            MP_CHECKOK( mp_badd(u, v, u) );
            do {
                s_mp_div2(a);
                if (mp_isodd(u)) {
                    MP_CHECKOK( mp_badd(u, pp, u) );
                }
                s_mp_div2(u);
            } while (!mp_isodd(a));
        }
    } while (1);

    MP_CHECKOK( mp_copy(u, r) );

CLEANUP:
    /* XXX this appears to be a memory leak in the NSS code */
    mp_clear(&aa);
    mp_clear(&bb);
    mp_clear(&uu);
    return res;

}

/* Convert the bit-string representation of a polynomial a into an array
 * of integers corresponding to the bits with non-zero coefficient.
 * Up to max elements of the array will be filled.  Return value is total
 * number of coefficients that would be extracted if array was large enough.
 */
int
mp_bpoly2arr(const mp_int *a, unsigned int p[], int max)
{
    int i, j, k;
    mp_digit top_bit, mask;

    top_bit = 1;
    top_bit <<= MP_DIGIT_BIT - 1;

    for (k = 0; k < max; k++) p[k] = 0;
    k = 0;

    for (i = MP_USED(a) - 1; i >= 0; i--) {
        mask = top_bit;
        for (j = MP_DIGIT_BIT - 1; j >= 0; j--) {
            if (MP_DIGITS(a)[i] & mask) {
                if (k < max) p[k] = MP_DIGIT_BIT * i + j;
                k++;
            }
            mask >>= 1;
        }
    }

    return k;
}

/* Convert the coefficient array representation of a polynomial to a
 * bit-string.  The array must be terminated by 0.
 */
mp_err
mp_barr2poly(const unsigned int p[], mp_int *a)
{

    mp_err res = MP_OKAY;
    int i;

    mp_zero(a);
    for (i = 0; p[i] > 0; i++) {
        MP_CHECKOK( mpl_set_bit(a, p[i], 1) );
    }
    MP_CHECKOK( mpl_set_bit(a, 0, 1) );

CLEANUP:
    return res;
}

Other Java examples (source code examples)

Here is a short list of links related to this Java mp_gf2m.c source code file:

... this post is sponsored by my books ...

#1 New Release!

FP Best Seller

 

new blog posts

 

Copyright 1998-2024 Alvin Alexander, alvinalexander.com
All Rights Reserved.

A percentage of advertising revenue from
pages under the /java/jwarehouse URI on this website is
paid back to open source projects.