alvinalexander.com | career | drupal | java | mac | mysql | perl | scala | uml | unix  

Java example source code file (mpi-priv.h)

This example Java source code file (mpi-priv.h) is included in the alvinalexander.com "Java Source Code Warehouse" project. The intent of this project is to help you "Learn Java by Example" TM.

Learn more about this Java project at its project page.

Java - Java tags/keywords

diag, log_v_2, mp_howmany, mp_logtab, mp_macro, mp_memcpy, mp_memset, mp_used, mpi_asm_decl, nss_use_comba

The mpi-priv.h Java example source code

/*
 * Copyright (c) 2007, 2011, Oracle and/or its affiliates. All rights reserved.
 * Use is subject to license terms.
 *
 * This library is free software; you can redistribute it and/or
 * modify it under the terms of the GNU Lesser General Public
 * License as published by the Free Software Foundation; either
 * version 2.1 of the License, or (at your option) any later version.
 *
 * This library is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
 * Lesser General Public License for more details.
 *
 * You should have received a copy of the GNU Lesser General Public License
 * along with this library; if not, write to the Free Software Foundation,
 * Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
 *
 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
 * or visit www.oracle.com if you need additional information or have any
 * questions.
 */

/* *********************************************************************
 *
 * The Original Code is the MPI Arbitrary Precision Integer Arithmetic library.
 *
 * The Initial Developer of the Original Code is
 * Michael J. Fromberger.
 * Portions created by the Initial Developer are Copyright (C) 1998
 * the Initial Developer. All Rights Reserved.
 *
 * Contributor(s):
 *   Netscape Communications Corporation
 *
 *********************************************************************** */

/*  Arbitrary precision integer arithmetic library
 *
 *  NOTE WELL: the content of this header file is NOT part of the "public"
 *  API for the MPI library, and may change at any time.
 *  Application programs that use libmpi should NOT include this header file.
 */

#ifndef _MPI_PRIV_H
#define _MPI_PRIV_H

/* $Id: mpi-priv.h,v 1.20 2005/11/22 07:16:43 relyea%netscape.com Exp $ */

#include "mpi.h"
#ifndef _KERNEL
#include <stdlib.h>
#include <string.h>
#include <ctype.h>
#endif /* _KERNEL */

#if MP_DEBUG
#include <stdio.h>

#define DIAG(T,V) {fprintf(stderr,T);mp_print(V,stderr);fputc('\n',stderr);}
#else
#define DIAG(T,V)
#endif

/* If we aren't using a wired-in logarithm table, we need to include
   the math library to get the log() function
 */

/* {{{ s_logv_2[] - log table for 2 in various bases */

#if MP_LOGTAB
/*
  A table of the logs of 2 for various bases (the 0 and 1 entries of
  this table are meaningless and should not be referenced).

  This table is used to compute output lengths for the mp_toradix()
  function.  Since a number n in radix r takes up about log_r(n)
  digits, we estimate the output size by taking the least integer
  greater than log_r(n), where:

  log_r(n) = log_2(n) * log_r(2)

  This table, therefore, is a table of log_r(2) for 2 <= r <= 36,
  which are the output bases supported.
 */

extern const float s_logv_2[];
#define LOG_V_2(R)  s_logv_2[(R)]

#else

/*
   If MP_LOGTAB is not defined, use the math library to compute the
   logarithms on the fly.  Otherwise, use the table.
   Pick which works best for your system.
 */

#include <math.h>
#define LOG_V_2(R)  (log(2.0)/log(R))

#endif /* if MP_LOGTAB */

/* }}} */

/* {{{ Digit arithmetic macros */

/*
  When adding and multiplying digits, the results can be larger than
  can be contained in an mp_digit.  Thus, an mp_word is used.  These
  macros mask off the upper and lower digits of the mp_word (the
  mp_word may be more than 2 mp_digits wide, but we only concern
  ourselves with the low-order 2 mp_digits)
 */

#define  CARRYOUT(W)  (mp_digit)((W)>>DIGIT_BIT)
#define  ACCUM(W)     (mp_digit)(W)

#define MP_MIN(a,b)   (((a) < (b)) ? (a) : (b))
#define MP_MAX(a,b)   (((a) > (b)) ? (a) : (b))
#define MP_HOWMANY(a,b) (((a) + (b) - 1)/(b))
#define MP_ROUNDUP(a,b) (MP_HOWMANY(a,b) * (b))

/* }}} */

/* {{{ Comparison constants */

#define  MP_LT       -1
#define  MP_EQ        0
#define  MP_GT        1

/* }}} */

/* {{{ private function declarations */

/*
   If MP_MACRO is false, these will be defined as actual functions;
   otherwise, suitable macro definitions will be used.  This works
   around the fact that ANSI C89 doesn't support an 'inline' keyword
   (although I hear C9x will ... about bloody time).  At present, the
   macro definitions are identical to the function bodies, but they'll
   expand in place, instead of generating a function call.

   I chose these particular functions to be made into macros because
   some profiling showed they are called a lot on a typical workload,
   and yet they are primarily housekeeping.
 */
#if MP_MACRO == 0
 void     s_mp_setz(mp_digit *dp, mp_size count); /* zero digits           */
 void     s_mp_copy(const mp_digit *sp, mp_digit *dp, mp_size count); /* copy */
 void    *s_mp_alloc(size_t nb, size_t ni, int flag); /* general allocator    */
 void     s_mp_free(void *ptr, mp_size);          /* general free function */
extern unsigned long mp_allocs;
extern unsigned long mp_frees;
extern unsigned long mp_copies;
#else

 /* Even if these are defined as macros, we need to respect the settings
    of the MP_MEMSET and MP_MEMCPY configuration options...
  */
 #if MP_MEMSET == 0
  #define  s_mp_setz(dp, count) \
       {int ix;for(ix=0;ix<(count);ix++)(dp)[ix]=0;}
 #else
  #define  s_mp_setz(dp, count) memset(dp, 0, (count) * sizeof(mp_digit))
 #endif /* MP_MEMSET */

 #if MP_MEMCPY == 0
  #define  s_mp_copy(sp, dp, count) \
       {int ix;for(ix=0;ix<(count);ix++)(dp)[ix]=(sp)[ix];}
 #else
  #define  s_mp_copy(sp, dp, count) memcpy(dp, sp, (count) * sizeof(mp_digit))
 #endif /* MP_MEMCPY */

 #define  s_mp_alloc(nb, ni)  calloc(nb, ni)
 #define  s_mp_free(ptr) {if(ptr) free(ptr);}
#endif /* MP_MACRO */

mp_err   s_mp_grow(mp_int *mp, mp_size min);   /* increase allocated size */
mp_err   s_mp_pad(mp_int *mp, mp_size min);    /* left pad with zeroes    */

#if MP_MACRO == 0
 void     s_mp_clamp(mp_int *mp);               /* clip leading zeroes     */
#else
 #define  s_mp_clamp(mp)\
  { mp_size used = MP_USED(mp); \
    while (used > 1 && DIGIT(mp, used - 1) == 0) --used; \
    MP_USED(mp) = used; \
  }
#endif /* MP_MACRO */

void     s_mp_exch(mp_int *a, mp_int *b);      /* swap a and b in place   */

mp_err   s_mp_lshd(mp_int *mp, mp_size p);     /* left-shift by p digits  */
void     s_mp_rshd(mp_int *mp, mp_size p);     /* right-shift by p digits */
mp_err   s_mp_mul_2d(mp_int *mp, mp_digit d);  /* multiply by 2^d in place */
void     s_mp_div_2d(mp_int *mp, mp_digit d);  /* divide by 2^d in place  */
void     s_mp_mod_2d(mp_int *mp, mp_digit d);  /* modulo 2^d in place     */
void     s_mp_div_2(mp_int *mp);               /* divide by 2 in place    */
mp_err   s_mp_mul_2(mp_int *mp);               /* multiply by 2 in place  */
mp_err   s_mp_norm(mp_int *a, mp_int *b, mp_digit *pd);
                                               /* normalize for division  */
mp_err   s_mp_add_d(mp_int *mp, mp_digit d);   /* unsigned digit addition */
mp_err   s_mp_sub_d(mp_int *mp, mp_digit d);   /* unsigned digit subtract */
mp_err   s_mp_mul_d(mp_int *mp, mp_digit d);   /* unsigned digit multiply */
mp_err   s_mp_div_d(mp_int *mp, mp_digit d, mp_digit *r);
                                               /* unsigned digit divide   */
mp_err   s_mp_reduce(mp_int *x, const mp_int *m, const mp_int *mu);
                                               /* Barrett reduction       */
mp_err   s_mp_add(mp_int *a, const mp_int *b); /* magnitude addition      */
mp_err   s_mp_add_3arg(const mp_int *a, const mp_int *b, mp_int *c);
mp_err   s_mp_sub(mp_int *a, const mp_int *b); /* magnitude subtract      */
mp_err   s_mp_sub_3arg(const mp_int *a, const mp_int *b, mp_int *c);
mp_err   s_mp_add_offset(mp_int *a, mp_int *b, mp_size offset);
                                               /* a += b * RADIX^offset   */
mp_err   s_mp_mul(mp_int *a, const mp_int *b); /* magnitude multiply      */
#if MP_SQUARE
mp_err   s_mp_sqr(mp_int *a);                  /* magnitude square        */
#else
#define  s_mp_sqr(a) s_mp_mul(a, a)
#endif
mp_err   s_mp_div(mp_int *rem, mp_int *div, mp_int *quot); /* magnitude div */
mp_err   s_mp_exptmod(const mp_int *a, const mp_int *b, const mp_int *m, mp_int *c);
mp_err   s_mp_2expt(mp_int *a, mp_digit k);    /* a = 2^k                 */
int      s_mp_cmp(const mp_int *a, const mp_int *b); /* magnitude comparison */
int      s_mp_cmp_d(const mp_int *a, mp_digit d); /* magnitude digit compare */
int      s_mp_ispow2(const mp_int *v);         /* is v a power of 2?      */
int      s_mp_ispow2d(mp_digit d);             /* is d a power of 2?      */

int      s_mp_tovalue(char ch, int r);          /* convert ch to value    */
char     s_mp_todigit(mp_digit val, int r, int low); /* convert val to digit */
int      s_mp_outlen(int bits, int r);          /* output length in bytes */
mp_digit s_mp_invmod_radix(mp_digit P);   /* returns (P ** -1) mod RADIX */
mp_err   s_mp_invmod_odd_m( const mp_int *a, const mp_int *m, mp_int *c);
mp_err   s_mp_invmod_2d(    const mp_int *a, mp_size k,       mp_int *c);
mp_err   s_mp_invmod_even_m(const mp_int *a, const mp_int *m, mp_int *c);

#ifdef NSS_USE_COMBA

#define IS_POWER_OF_2(a) ((a) && !((a) & ((a)-1)))

void s_mp_mul_comba_4(const mp_int *A, const mp_int *B, mp_int *C);
void s_mp_mul_comba_8(const mp_int *A, const mp_int *B, mp_int *C);
void s_mp_mul_comba_16(const mp_int *A, const mp_int *B, mp_int *C);
void s_mp_mul_comba_32(const mp_int *A, const mp_int *B, mp_int *C);

void s_mp_sqr_comba_4(const mp_int *A, mp_int *B);
void s_mp_sqr_comba_8(const mp_int *A, mp_int *B);
void s_mp_sqr_comba_16(const mp_int *A, mp_int *B);
void s_mp_sqr_comba_32(const mp_int *A, mp_int *B);

#endif /* end NSS_USE_COMBA */

/* ------ mpv functions, operate on arrays of digits, not on mp_int's ------ */
#if defined (__OS2__) && defined (__IBMC__)
#define MPI_ASM_DECL __cdecl
#else
#define MPI_ASM_DECL
#endif

#ifdef MPI_AMD64

mp_digit MPI_ASM_DECL s_mpv_mul_set_vec64(mp_digit*, mp_digit *, mp_size, mp_digit);
mp_digit MPI_ASM_DECL s_mpv_mul_add_vec64(mp_digit*, const mp_digit*, mp_size, mp_digit);

/* c = a * b */
#define s_mpv_mul_d(a, a_len, b, c) \
        ((unsigned long*)c)[a_len] = s_mpv_mul_set_vec64(c, a, a_len, b)

/* c += a * b */
#define s_mpv_mul_d_add(a, a_len, b, c) \
        ((unsigned long*)c)[a_len] = s_mpv_mul_add_vec64(c, a, a_len, b)

#else

void     MPI_ASM_DECL s_mpv_mul_d(const mp_digit *a, mp_size a_len,
                                        mp_digit b, mp_digit *c);
void     MPI_ASM_DECL s_mpv_mul_d_add(const mp_digit *a, mp_size a_len,
                                            mp_digit b, mp_digit *c);

#endif

void     MPI_ASM_DECL s_mpv_mul_d_add_prop(const mp_digit *a,
                                                mp_size a_len, mp_digit b,
                                                mp_digit *c);
void     MPI_ASM_DECL s_mpv_sqr_add_prop(const mp_digit *a,
                                                mp_size a_len,
                                                mp_digit *sqrs);

mp_err   MPI_ASM_DECL s_mpv_div_2dx1d(mp_digit Nhi, mp_digit Nlo,
                            mp_digit divisor, mp_digit *quot, mp_digit *rem);

/* c += a * b * (MP_RADIX ** offset);  */
#define s_mp_mul_d_add_offset(a, b, c, off) \
(s_mpv_mul_d_add_prop(MP_DIGITS(a), MP_USED(a), b, MP_DIGITS(c) + off), MP_OKAY)

typedef struct {
  mp_int       N;       /* modulus N */
  mp_digit     n0prime; /* n0' = - (n0 ** -1) mod MP_RADIX */
  mp_size      b;       /* R == 2 ** b,  also b = # significant bits in N */
} mp_mont_modulus;

mp_err s_mp_mul_mont(const mp_int *a, const mp_int *b, mp_int *c,
                       mp_mont_modulus *mmm);
mp_err s_mp_redc(mp_int *T, mp_mont_modulus *mmm);

/*
 * s_mpi_getProcessorLineSize() returns the size in bytes of the cache line
 * if a cache exists, or zero if there is no cache. If more than one
 * cache line exists, it should return the smallest line size (which is
 * usually the L1 cache).
 *
 * mp_modexp uses this information to make sure that private key information
 * isn't being leaked through the cache.
 *
 * see mpcpucache.c for the implementation.
 */
unsigned long s_mpi_getProcessorLineSize();

/* }}} */
#endif /* _MPI_PRIV_H */

Other Java examples (source code examples)

Here is a short list of links related to this Java mpi-priv.h source code file:

... this post is sponsored by my books ...

#1 New Release!

FP Best Seller

 

new blog posts

 

Copyright 1998-2021 Alvin Alexander, alvinalexander.com
All Rights Reserved.

A percentage of advertising revenue from
pages under the /java/jwarehouse URI on this website is
paid back to open source projects.