alvinalexander.com | career | drupal | java | mac | mysql | perl | scala | uml | unix  

Java example source code file (pkcs11.h)

This example Java source code file (pkcs11.h) is included in the alvinalexander.com "Java Source Code Warehouse" project. The intent of this project is to help you "Learn Java by Example" TM.

Learn more about this Java project at its project page.

Java - Java tags/keywords

ck_declare_function, ck_declare_function_pointer, ck_function_list, ck_need_arg_list, ck_pkcs11_function_info, ck_version, cryptoki

The pkcs11.h Java example source code

/* pkcs11.h include file for PKCS #11. */
/* $Revision: 1.4 $ */

/* License to copy and use this software is granted provided that it is
 * identified as "RSA Security Inc. PKCS #11 Cryptographic Token Interface
 * (Cryptoki)" in all material mentioning or referencing this software.

 * License is also granted to make and use derivative works provided that
 * such works are identified as "derived from the RSA Security Inc. PKCS #11
 * Cryptographic Token Interface (Cryptoki)" in all material mentioning or
 * referencing the derived work.

 * RSA Security Inc. makes no representations concerning either the
 * merchantability of this software or the suitability of this software for
 * any particular purpose. It is provided "as is" without express or implied
 * warranty of any kind.
 */

#ifndef _PKCS11_H_
#define _PKCS11_H_ 1

#ifdef __cplusplus
extern "C" {
#endif

/* Before including this file (pkcs11.h) (or pkcs11t.h by
 * itself), 6 platform-specific macros must be defined.  These
 * macros are described below, and typical definitions for them
 * are also given.  Be advised that these definitions can depend
 * on both the platform and the compiler used (and possibly also
 * on whether a Cryptoki library is linked statically or
 * dynamically).
 *
 * In addition to defining these 6 macros, the packing convention
 * for Cryptoki structures should be set.  The Cryptoki
 * convention on packing is that structures should be 1-byte
 * aligned.
 *
 * If you're using Microsoft Developer Studio 5.0 to produce
 * Win32 stuff, this might be done by using the following
 * preprocessor directive before including pkcs11.h or pkcs11t.h:
 *
 * #pragma pack(push, cryptoki, 1)
 *
 * and using the following preprocessor directive after including
 * pkcs11.h or pkcs11t.h:
 *
 * #pragma pack(pop, cryptoki)
 *
 * If you're using an earlier version of Microsoft Developer
 * Studio to produce Win16 stuff, this might be done by using
 * the following preprocessor directive before including
 * pkcs11.h or pkcs11t.h:
 *
 * #pragma pack(1)
 *
 * In a UNIX environment, you're on your own for this.  You might
 * not need to do (or be able to do!) anything.
 *
 *
 * Now for the macros:
 *
 *
 * 1. CK_PTR: The indirection string for making a pointer to an
 * object.  It can be used like this:
 *
 * typedef CK_BYTE CK_PTR CK_BYTE_PTR;
 *
 * If you're using Microsoft Developer Studio 5.0 to produce
 * Win32 stuff, it might be defined by:
 *
 * #define CK_PTR *
 *
 * If you're using an earlier version of Microsoft Developer
 * Studio to produce Win16 stuff, it might be defined by:
 *
 * #define CK_PTR far *
 *
 * In a typical UNIX environment, it might be defined by:
 *
 * #define CK_PTR *
 *
 *
 * 2. CK_DEFINE_FUNCTION(returnType, name): A macro which makes
 * an exportable Cryptoki library function definition out of a
 * return type and a function name.  It should be used in the
 * following fashion to define the exposed Cryptoki functions in
 * a Cryptoki library:
 *
 * CK_DEFINE_FUNCTION(CK_RV, C_Initialize)(
 *   CK_VOID_PTR pReserved
 * )
 * {
 *   ...
 * }
 *
 * If you're using Microsoft Developer Studio 5.0 to define a
 * function in a Win32 Cryptoki .dll, it might be defined by:
 *
 * #define CK_DEFINE_FUNCTION(returnType, name) \
 *   returnType __declspec(dllexport) name
 *
 * If you're using an earlier version of Microsoft Developer
 * Studio to define a function in a Win16 Cryptoki .dll, it
 * might be defined by:
 *
 * #define CK_DEFINE_FUNCTION(returnType, name) \
 *   returnType __export _far _pascal name
 *
 * In a UNIX environment, it might be defined by:
 *
 * #define CK_DEFINE_FUNCTION(returnType, name) \
 *   returnType name
 *
 *
 * 3. CK_DECLARE_FUNCTION(returnType, name): A macro which makes
 * an importable Cryptoki library function declaration out of a
 * return type and a function name.  It should be used in the
 * following fashion:
 *
 * extern CK_DECLARE_FUNCTION(CK_RV, C_Initialize)(
 *   CK_VOID_PTR pReserved
 * );
 *
 * If you're using Microsoft Developer Studio 5.0 to declare a
 * function in a Win32 Cryptoki .dll, it might be defined by:
 *
 * #define CK_DECLARE_FUNCTION(returnType, name) \
 *   returnType __declspec(dllimport) name
 *
 * If you're using an earlier version of Microsoft Developer
 * Studio to declare a function in a Win16 Cryptoki .dll, it
 * might be defined by:
 *
 * #define CK_DECLARE_FUNCTION(returnType, name) \
 *   returnType __export _far _pascal name
 *
 * In a UNIX environment, it might be defined by:
 *
 * #define CK_DECLARE_FUNCTION(returnType, name) \
 *   returnType name
 *
 *
 * 4. CK_DECLARE_FUNCTION_POINTER(returnType, name): A macro
 * which makes a Cryptoki API function pointer declaration or
 * function pointer type declaration out of a return type and a
 * function name.  It should be used in the following fashion:
 *
 * // Define funcPtr to be a pointer to a Cryptoki API function
 * // taking arguments args and returning CK_RV.
 * CK_DECLARE_FUNCTION_POINTER(CK_RV, funcPtr)(args);
 *
 * or
 *
 * // Define funcPtrType to be the type of a pointer to a
 * // Cryptoki API function taking arguments args and returning
 * // CK_RV, and then define funcPtr to be a variable of type
 * // funcPtrType.
 * typedef CK_DECLARE_FUNCTION_POINTER(CK_RV, funcPtrType)(args);
 * funcPtrType funcPtr;
 *
 * If you're using Microsoft Developer Studio 5.0 to access
 * functions in a Win32 Cryptoki .dll, in might be defined by:
 *
 * #define CK_DECLARE_FUNCTION_POINTER(returnType, name) \
 *   returnType __declspec(dllimport) (* name)
 *
 * If you're using an earlier version of Microsoft Developer
 * Studio to access functions in a Win16 Cryptoki .dll, it might
 * be defined by:
 *
 * #define CK_DECLARE_FUNCTION_POINTER(returnType, name) \
 *   returnType __export _far _pascal (* name)
 *
 * In a UNIX environment, it might be defined by:
 *
 * #define CK_DECLARE_FUNCTION_POINTER(returnType, name) \
 *   returnType (* name)
 *
 *
 * 5. CK_CALLBACK_FUNCTION(returnType, name): A macro which makes
 * a function pointer type for an application callback out of
 * a return type for the callback and a name for the callback.
 * It should be used in the following fashion:
 *
 * CK_CALLBACK_FUNCTION(CK_RV, myCallback)(args);
 *
 * to declare a function pointer, myCallback, to a callback
 * which takes arguments args and returns a CK_RV.  It can also
 * be used like this:
 *
 * typedef CK_CALLBACK_FUNCTION(CK_RV, myCallbackType)(args);
 * myCallbackType myCallback;
 *
 * If you're using Microsoft Developer Studio 5.0 to do Win32
 * Cryptoki development, it might be defined by:
 *
 * #define CK_CALLBACK_FUNCTION(returnType, name) \
 *   returnType (* name)
 *
 * If you're using an earlier version of Microsoft Developer
 * Studio to do Win16 development, it might be defined by:
 *
 * #define CK_CALLBACK_FUNCTION(returnType, name) \
 *   returnType _far _pascal (* name)
 *
 * In a UNIX environment, it might be defined by:
 *
 * #define CK_CALLBACK_FUNCTION(returnType, name) \
 *   returnType (* name)
 *
 *
 * 6. NULL_PTR: This macro is the value of a NULL pointer.
 *
 * In any ANSI/ISO C environment (and in many others as well),
 * this should best be defined by
 *
 * #ifndef NULL_PTR
 * #define NULL_PTR 0
 * #endif
 */


/* All the various Cryptoki types and #define'd values are in the
 * file pkcs11t.h. */
#include "pkcs11t.h"

#define __PASTE(x,y)      x##y


/* ==============================================================
 * Define the "extern" form of all the entry points.
 * ==============================================================
 */

#define CK_NEED_ARG_LIST  1
#define CK_PKCS11_FUNCTION_INFO(name) \
  extern CK_DECLARE_FUNCTION(CK_RV, name)

/* pkcs11f.h has all the information about the Cryptoki
 * function prototypes. */
#include "pkcs11f.h"

#undef CK_NEED_ARG_LIST
#undef CK_PKCS11_FUNCTION_INFO


/* ==============================================================
 * Define the typedef form of all the entry points.  That is, for
 * each Cryptoki function C_XXX, define a type CK_C_XXX which is
 * a pointer to that kind of function.
 * ==============================================================
 */

#define CK_NEED_ARG_LIST  1
#define CK_PKCS11_FUNCTION_INFO(name) \
  typedef CK_DECLARE_FUNCTION_POINTER(CK_RV, __PASTE(CK_,name))

/* pkcs11f.h has all the information about the Cryptoki
 * function prototypes. */
#include "pkcs11f.h"

#undef CK_NEED_ARG_LIST
#undef CK_PKCS11_FUNCTION_INFO


/* ==============================================================
 * Define structed vector of entry points.  A CK_FUNCTION_LIST
 * contains a CK_VERSION indicating a library's Cryptoki version
 * and then a whole slew of function pointers to the routines in
 * the library.  This type was declared, but not defined, in
 * pkcs11t.h.
 * ==============================================================
 */

#define CK_PKCS11_FUNCTION_INFO(name) \
  __PASTE(CK_,name) name;

struct CK_FUNCTION_LIST {

  CK_VERSION    version;  /* Cryptoki version */

/* Pile all the function pointers into the CK_FUNCTION_LIST. */
/* pkcs11f.h has all the information about the Cryptoki
 * function prototypes. */
#include "pkcs11f.h"

};

#undef CK_PKCS11_FUNCTION_INFO


#undef __PASTE

#ifdef __cplusplus
}
#endif

#endif

Other Java examples (source code examples)

Here is a short list of links related to this Java pkcs11.h source code file:

... this post is sponsored by my books ...

#1 New Release!

FP Best Seller

 

new blog posts

 

Copyright 1998-2021 Alvin Alexander, alvinalexander.com
All Rights Reserved.

A percentage of advertising revenue from
pages under the /java/jwarehouse URI on this website is
paid back to open source projects.