alvinalexander.com | career | drupal | java | mac | mysql | perl | scala | uml | unix  

Java example source code file (mlib_v_ImageAffine_BL.c)

This example Java source code file (mlib_v_ImageAffine_BL.c) is included in the alvinalexander.com "Java Source Code Warehouse" project. The intent of this project is to help you "Learn Java by Example" TM.

Learn more about this Java project at its project page.

Java - Java tags/keywords

al_addr, declarevar, fun_name, get_pointer, ld_u8, lut, mlib_success, mlib_vis2, new_line, null

The mlib_v_ImageAffine_BL.c Java example source code

/*
 * Copyright (c) 1998, 2003, Oracle and/or its affiliates. All rights reserved.
 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
 *
 * This code is free software; you can redistribute it and/or modify it
 * under the terms of the GNU General Public License version 2 only, as
 * published by the Free Software Foundation.  Oracle designates this
 * particular file as subject to the "Classpath" exception as provided
 * by Oracle in the LICENSE file that accompanied this code.
 *
 * This code is distributed in the hope that it will be useful, but WITHOUT
 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
 * version 2 for more details (a copy is included in the LICENSE file that
 * accompanied this code).
 *
 * You should have received a copy of the GNU General Public License version
 * 2 along with this work; if not, write to the Free Software Foundation,
 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
 *
 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
 * or visit www.oracle.com if you need additional information or have any
 * questions.
 */



/*
 *      The functions step along the lines from xLeft to xRight and apply
 *      the bilinear filtering.
 *
 */

#include "vis_proto.h"
#include "mlib_image.h"
#include "mlib_ImageColormap.h"
#include "mlib_ImageCopy.h"
#include "mlib_ImageAffine.h"
#include "mlib_v_ImageFilters.h"
#include "mlib_v_ImageChannelExtract.h"

/***************************************************************/
/*#define MLIB_VIS2*/

/***************************************************************/
#define DTYPE mlib_u8

#define FUN_NAME(CHAN) mlib_ImageAffine_u8_##CHAN##_bl

/***************************************************************/
static mlib_status FUN_NAME(2ch_na)(mlib_affine_param *param);
static mlib_status FUN_NAME(4ch_na)(mlib_affine_param *param);

/***************************************************************/
#ifdef MLIB_VIS2
#define MLIB_WRITE_BMASK(bmask) vis_write_bmask(bmask, 0)
#else
#define MLIB_WRITE_BMASK(bmask)
#endif /* MLIB_VIS2 */

/***************************************************************/
#define FILTER_BITS  8

/***************************************************************/
#undef  DECLAREVAR
#define DECLAREVAR()                                            \
  DECLAREVAR0();                                                \
  mlib_s32  *warp_tbl   = param -> warp_tbl;                    \
  mlib_s32  srcYStride = param -> srcYStride;                   \
  mlib_u8   *dl;                                                \
  mlib_s32  i, size;                                            \
  mlib_d64  k05 = vis_to_double_dup(0x00080008);                \
  mlib_d64  d0, d1, d2, d3, dd

/***************************************************************/
#define FMUL_16x16(x, y)                                        \
  vis_fpadd16(vis_fmul8sux16(x, y), vis_fmul8ulx16(x, y))

/***************************************************************/
#define BUF_SIZE  512

/***************************************************************/
const mlib_u32 mlib_fmask_arr[] = {
  0x00000000, 0x000000FF, 0x0000FF00, 0x0000FFFF,
  0x00FF0000, 0x00FF00FF, 0x00FFFF00, 0x00FFFFFF,
  0xFF000000, 0xFF0000FF, 0xFF00FF00, 0xFF00FFFF,
  0xFFFF0000, 0xFFFF00FF, 0xFFFFFF00, 0xFFFFFFFF
};

/***************************************************************/
#define DOUBLE_4U16(x0, x1, x2, x3)                             \
  vis_to_double((((x0 & 0xFFFE) << 15) | ((x1 & 0xFFFE) >> 1)), \
                (((x2 & 0xFFFE) << 15) | ((x3 & 0xFFFE) >> 1)))

/***************************************************************/
#define BL_SUM(HL)                                              \
  delta1_x = vis_fpsub16(mask_7fff, deltax);                    \
  delta1_y = vis_fpsub16(mask_7fff, deltay);                    \
                                                                \
  d0 = vis_fmul8x16(vis_read_##HL(s0), delta1_x);               \
  d1 = vis_fmul8x16(vis_read_##HL(s1), deltax);                 \
  d0 = vis_fpadd16(d0, d1);                                     \
  d0 = FMUL_16x16(d0, delta1_y);                                \
  d2 = vis_fmul8x16(vis_read_##HL(s2), delta1_x);               \
  d3 = vis_fmul8x16(vis_read_##HL(s3), deltax);                 \
  d2 = vis_fpadd16(d2, d3);                                     \
  d2 = FMUL_16x16(d2, deltay);                                  \
  dd = vis_fpadd16(d0, d2);                                     \
  dd = vis_fpadd16(dd, k05);                                    \
  df = vis_fpack16(dd);                                         \
                                                                \
  deltax = vis_fpadd16(deltax, dx64);                           \
  deltay = vis_fpadd16(deltay, dy64);                           \
  deltax = vis_fand(deltax, mask_7fff);                         \
  deltay = vis_fand(deltay, mask_7fff)

/***************************************************************/
#define GET_FILTER_XY()                                         \
  mlib_d64 filterx, filtery, filterxy;                          \
  mlib_s32 filterpos;                                           \
  filterpos = (X >> FILTER_SHIFT) & FILTER_MASK;                \
  filterx = *((mlib_d64 *) ((mlib_u8 *) mlib_filters_u8_bl +    \
                                        filterpos));            \
  filterpos = (Y >> FILTER_SHIFT) & FILTER_MASK;                \
  filtery = *((mlib_d64 *) ((mlib_u8 *) mlib_filters_u8_bl +    \
                                filterpos + 8*FILTER_SIZE));    \
  filterxy = FMUL_16x16(filterx, filtery)

/***************************************************************/
#define LD_U8(sp, ind)  vis_read_lo(vis_ld_u8(sp + ind))
#define LD_U16(sp, ind) vis_ld_u16(sp + ind)

/***************************************************************/
#define LOAD_1CH()                                                  \
  s0 = vis_fpmerge(LD_U8(sp0, 0), LD_U8(sp2, 0));                   \
  s1 = vis_fpmerge(LD_U8(sp0, 1), LD_U8(sp2, 1));                   \
  s2 = vis_fpmerge(LD_U8(sp0, srcYStride), LD_U8(sp2, srcYStride)); \
  s3 = vis_fpmerge(LD_U8(sp0, srcYStride + 1),                      \
                              LD_U8(sp2, srcYStride + 1));          \
                                                                    \
  t0 = vis_fpmerge(LD_U8(sp1, 0), LD_U8(sp3, 0));                   \
  t1 = vis_fpmerge(LD_U8(sp1, 1), LD_U8(sp3, 1));                   \
  t2 = vis_fpmerge(LD_U8(sp1, srcYStride), LD_U8(sp3, srcYStride)); \
  t3 = vis_fpmerge(LD_U8(sp1, srcYStride + 1),                      \
                              LD_U8(sp3, srcYStride + 1));          \
                                                                    \
  s0 = vis_fpmerge(vis_read_lo(s0), vis_read_lo(t0));               \
  s1 = vis_fpmerge(vis_read_lo(s1), vis_read_lo(t1));               \
  s2 = vis_fpmerge(vis_read_lo(s2), vis_read_lo(t2));               \
  s3 = vis_fpmerge(vis_read_lo(s3), vis_read_lo(t3))

/***************************************************************/
#define GET_POINTER(sp)                                         \
  sp = *(mlib_u8**)((mlib_u8*)lineAddr + PTR_SHIFT(Y)) +        \
                                (X >> MLIB_SHIFT);              \
  X += dX;                                                      \
  Y += dY

/***************************************************************/
#undef  PREPARE_DELTAS
#define PREPARE_DELTAS                                                             \
  if (warp_tbl != NULL) {                                                          \
    dX = warp_tbl[2*j    ];                                                        \
    dY = warp_tbl[2*j + 1];                                                        \
    dx64 = vis_to_double_dup((((dX << 1) & 0xFFFF) << 16) | ((dX << 1) & 0xFFFF)); \
    dy64 = vis_to_double_dup((((dY << 1) & 0xFFFF) << 16) | ((dY << 1) & 0xFFFF)); \
  }

/***************************************************************/
mlib_status FUN_NAME(1ch)(mlib_affine_param *param)
{
  DECLAREVAR();
  mlib_d64 mask_7fff = vis_to_double_dup(0x7FFF7FFF);
  mlib_d64 dx64, dy64, deltax, deltay, delta1_x, delta1_y;
  mlib_s32 off, x0, x1, x2, x3, y0, y1, y2, y3;
  mlib_f32 *dp, fmask;

  vis_write_gsr((1 << 3) | 7);

  dx64 = vis_to_double_dup((((dX << 1) & 0xFFFF) << 16) | ((dX << 1) & 0xFFFF));
  dy64 = vis_to_double_dup((((dY << 1) & 0xFFFF) << 16) | ((dY << 1) & 0xFFFF));

  for (j = yStart; j <= yFinish; j++) {
    mlib_u8  *sp0, *sp1, *sp2, *sp3;
    mlib_d64 s0, s1, s2, s3, t0, t1, t2, t3;
    mlib_f32 df;

    NEW_LINE(1);

    off = (mlib_s32)dl & 3;
    dp = (mlib_f32*)(dl - off);

    x0 = X - off*dX; y0 = Y - off*dY;
    x1 = x0 + dX;    y1 = y0 + dY;
    x2 = x1 + dX;    y2 = y1 + dY;
    x3 = x2 + dX;    y3 = y2 + dY;

    deltax = DOUBLE_4U16(x0, x1, x2, x3);
    deltay = DOUBLE_4U16(y0, y1, y2, y3);

    if (off) {
      mlib_s32 emask = vis_edge16((void*)(2*off), (void*)(2*(off + size - 1)));

      off = 4 - off;
      GET_POINTER(sp3);
      sp0 = sp1 = sp2 = sp3;

      if (off > 1 && size > 1) {
        GET_POINTER(sp3);
      }

      if (off > 2) {
        sp2 = sp3;

        if (size > 2) {
          GET_POINTER(sp3);
        }
      }

      LOAD_1CH();
      BL_SUM(lo);

      fmask = ((mlib_f32*)mlib_fmask_arr)[emask];
      *dp++ = vis_fors(vis_fands(fmask, df), vis_fandnots(fmask, dp[0]));

      size -= off;

      if (size < 0) size = 0;
    }

#pragma pipeloop(0)
    for (i = 0; i < size/4; i++) {
      GET_POINTER(sp0);
      GET_POINTER(sp1);
      GET_POINTER(sp2);
      GET_POINTER(sp3);

      LOAD_1CH();
      BL_SUM(lo);

      dp[i] = df;
    }

    off = size & 3;

    if (off) {
      GET_POINTER(sp0);
      sp1 = sp2 = sp3 = sp0;

      if (off > 1) {
        GET_POINTER(sp1);
      }

      if (off > 2) {
        GET_POINTER(sp2);
      }

      LOAD_1CH();
      BL_SUM(lo);

      fmask = ((mlib_f32*)mlib_fmask_arr)[(0xF0 >> off) & 0x0F];
      dp[i] = vis_fors(vis_fands(fmask, df), vis_fandnots(fmask, dp[i]));
    }
  }

  return MLIB_SUCCESS;
}

/***************************************************************/
#undef  GET_POINTER
#define GET_POINTER(sp)                                         \
  sp = *(mlib_u8**)((mlib_u8*)lineAddr + PTR_SHIFT(Y)) +        \
                        2*(X >> MLIB_SHIFT);                    \
  X += dX;                                                      \
  Y += dY

/***************************************************************/
#ifndef MLIB_VIS2

#define LOAD_2CH()                                              \
  s0 = vis_faligndata(LD_U16(sp1, 0), k05);                     \
  s1 = vis_faligndata(LD_U16(sp1, 2), k05);                     \
  s2 = vis_faligndata(LD_U16(sp1, srcYStride), k05);            \
  s3 = vis_faligndata(LD_U16(sp1, srcYStride + 2), k05);        \
                                                                \
  s0 = vis_faligndata(LD_U16(sp0, 0), s0);                      \
  s1 = vis_faligndata(LD_U16(sp0, 2), s1);                      \
  s2 = vis_faligndata(LD_U16(sp0, srcYStride), s2);             \
  s3 = vis_faligndata(LD_U16(sp0, srcYStride + 2), s3)

#define BL_SUM_2CH() BL_SUM(hi)

#else

#define LOAD_2CH()                                              \
  s0 = vis_bshuffle(LD_U16(sp0, 0), LD_U16(sp1, 0));            \
  s1 = vis_bshuffle(LD_U16(sp0, 2), LD_U16(sp1, 2));            \
  s2 = vis_bshuffle(LD_U16(sp0, srcYStride),                    \
                                LD_U16(sp1, srcYStride));                             \
  s3 = vis_bshuffle(LD_U16(sp0, srcYStride + 2),                \
                                LD_U16(sp1, srcYStride + 2))

#define BL_SUM_2CH() BL_SUM(lo)

#endif /* MLIB_VIS2 */

/***************************************************************/
#undef  PREPARE_DELTAS
#define PREPARE_DELTAS                                               \
  if (warp_tbl != NULL) {                                            \
    dX = warp_tbl[2*j    ];                                          \
    dY = warp_tbl[2*j + 1];                                          \
    dx64 = vis_to_double_dup(((dX & 0xFFFF) << 16) | (dX & 0xFFFF)); \
    dy64 = vis_to_double_dup(((dY & 0xFFFF) << 16) | (dY & 0xFFFF)); \
  }

/***************************************************************/
mlib_status FUN_NAME(2ch)(mlib_affine_param *param)
{
  DECLAREVAR();
  mlib_d64 mask_7fff = vis_to_double_dup(0x7FFF7FFF);
  mlib_d64 dx64, dy64, deltax, deltay, delta1_x, delta1_y;
  mlib_s32 off, x0, x1, y0, y1;

  if (((mlib_s32)lineAddr[0] | (mlib_s32)dstData | srcYStride | dstYStride) & 1) {
    return FUN_NAME(2ch_na)(param);
  }

  vis_write_gsr((1 << 3) | 6);
  MLIB_WRITE_BMASK(0x45cd67ef);

  dx64 = vis_to_double_dup(((dX & 0xFFFF) << 16) | (dX & 0xFFFF));
  dy64 = vis_to_double_dup(((dY & 0xFFFF) << 16) | (dY & 0xFFFF));

  for (j = yStart; j <= yFinish; j++) {
    mlib_u8  *sp0, *sp1;
    mlib_d64 s0, s1, s2, s3;
    mlib_f32 *dp, df, fmask;

    NEW_LINE(2);

    off = (mlib_s32)dl & 3;
    dp = (mlib_f32*)(dl - off);

    if (off) {
      x0 = X - dX; y0 = Y - dY;
      x1 = X;      y1 = Y;
    } else {
      x0 = X;      y0 = Y;
      x1 = X + dX; y1 = Y + dY;
    }

    deltax = DOUBLE_4U16(x0, x0, x1, x1);
    deltay = DOUBLE_4U16(y0, y0, y1, y1);

    if (off) {
      GET_POINTER(sp1);
      sp0 = sp1;
      LOAD_2CH();

      BL_SUM_2CH();

      fmask = ((mlib_f32*)mlib_fmask_arr)[0x3];
      *dp++ = vis_fors(vis_fands(fmask, df), vis_fandnots(fmask, dp[0]));

      size--;
    }

    if (size >= 2) {
      GET_POINTER(sp0);
      GET_POINTER(sp1);
      LOAD_2CH();

#pragma pipeloop(0)
      for (i = 0; i < (size - 2)/2; i++) {
        BL_SUM_2CH();

        GET_POINTER(sp0);
        GET_POINTER(sp1);
        LOAD_2CH();

        *dp++ = df;
      }

      BL_SUM_2CH();
      *dp++ = df;
    }

    if (size & 1) {
      GET_POINTER(sp0);
      sp1 = sp0;
      LOAD_2CH();

      BL_SUM_2CH();

      fmask = ((mlib_f32*)mlib_fmask_arr)[0x0C];
      *dp = vis_fors(vis_fands(fmask, df), vis_fandnots(fmask, *dp));
    }
  }

  return MLIB_SUCCESS;
}

/***************************************************************/
#ifndef MLIB_VIS2

#define LOAD_2CH_NA()                                           \
  s0 = vis_fpmerge(LD_U8(sp0, 0), LD_U8(sp1, 0));               \
  s1 = vis_fpmerge(LD_U8(sp0, 2), LD_U8(sp1, 2));               \
  s2 = vis_fpmerge(LD_U8(sp0, srcYStride),                      \
                              LD_U8(sp1, srcYStride));                         \
  s3 = vis_fpmerge(LD_U8(sp0, srcYStride + 2),                  \
                              LD_U8(sp1, srcYStride + 2));      \
                                                                \
  t0 = vis_fpmerge(LD_U8(sp0, 1), LD_U8(sp1, 1));               \
  t1 = vis_fpmerge(LD_U8(sp0, 3), LD_U8(sp1, 3));               \
  t2 = vis_fpmerge(LD_U8(sp0, srcYStride + 1),                  \
                              LD_U8(sp1, srcYStride + 1));      \
  t3 = vis_fpmerge(LD_U8(sp0, srcYStride + 3),                  \
                              LD_U8(sp1, srcYStride + 3));      \
                                                                \
  s0 = vis_fpmerge(vis_read_lo(s0), vis_read_lo(t0));           \
  s1 = vis_fpmerge(vis_read_lo(s1), vis_read_lo(t1));           \
  s2 = vis_fpmerge(vis_read_lo(s2), vis_read_lo(t2));           \
  s3 = vis_fpmerge(vis_read_lo(s3), vis_read_lo(t3))

#define BL_SUM_2CH_NA()  BL_SUM(lo)

#else

#define LOAD_2CH_NA()                                           \
  vis_alignaddr(sp0, 0);                                        \
  spa = AL_ADDR(sp0, 0);                                        \
  s0 = vis_faligndata(spa[0], spa[1]);                          \
                                                                \
  vis_alignaddr(sp1, 0);                                        \
  spa = AL_ADDR(sp1, 0);                                        \
  s1 = vis_faligndata(spa[0], spa[1]);                          \
                                                                \
  vis_alignaddr(sp0, srcYStride);                               \
  spa = AL_ADDR(sp0, srcYStride);                               \
  s2 = vis_faligndata(spa[0], spa[1]);                          \
                                                                \
  vis_alignaddr(sp1, srcYStride);                               \
  spa = AL_ADDR(sp1, srcYStride);                               \
  s3 = vis_faligndata(spa[0], spa[1]);                          \
                                                                \
  s0 = vis_bshuffle(s0, s1);                                    \
  s2 = vis_bshuffle(s2, s3)

#define BL_SUM_2CH_NA()                                         \
  delta1_x = vis_fpsub16(mask_7fff, deltax);                    \
  delta1_y = vis_fpsub16(mask_7fff, deltay);                    \
                                                                \
  d0 = vis_fmul8x16(vis_read_hi(s0), delta1_x);                 \
  d1 = vis_fmul8x16(vis_read_lo(s0), deltax);                   \
  d0 = vis_fpadd16(d0, d1);                                     \
  d0 = FMUL_16x16(d0, delta1_y);                                \
  d2 = vis_fmul8x16(vis_read_hi(s2), delta1_x);                 \
  d3 = vis_fmul8x16(vis_read_lo(s2), deltax);                   \
  d2 = vis_fpadd16(d2, d3);                                     \
  d2 = FMUL_16x16(d2, deltay);                                  \
  dd = vis_fpadd16(d0, d2);                                     \
  dd = vis_fpadd16(dd, k05);                                    \
  df = vis_fpack16(dd);                                         \
                                                                \
  deltax = vis_fpadd16(deltax, dx64);                           \
  deltay = vis_fpadd16(deltay, dy64);                           \
  deltax = vis_fand(deltax, mask_7fff);                         \
  deltay = vis_fand(deltay, mask_7fff)

#endif /* MLIB_VIS2 */

/***************************************************************/
mlib_status FUN_NAME(2ch_na)(mlib_affine_param *param)
{
  DECLAREVAR();
  mlib_d64 mask_7fff = vis_to_double_dup(0x7FFF7FFF);
  mlib_d64 dx64, dy64, deltax, deltay, delta1_x, delta1_y;
  mlib_s32 max_xsize = param -> max_xsize, bsize;
  mlib_s32 x0, x1, y0, y1;
  mlib_f32 buff[BUF_SIZE], *pbuff = buff;

  bsize = (max_xsize + 1)/2;

  if (bsize > BUF_SIZE) {
    pbuff = mlib_malloc(bsize*sizeof(mlib_f32));

    if (pbuff == NULL) return MLIB_FAILURE;
  }

  vis_write_gsr((1 << 3) | 6);
  MLIB_WRITE_BMASK(0x018923AB);

  dx64 = vis_to_double_dup(((dX & 0xFFFF) << 16) | (dX & 0xFFFF));
  dy64 = vis_to_double_dup(((dY & 0xFFFF) << 16) | (dY & 0xFFFF));

  for (j = yStart; j <= yFinish; j++) {
    mlib_u8  *sp0, *sp1;
    mlib_d64 s0, s1, s2, s3;
#ifndef MLIB_VIS2
    mlib_d64 t0, t1, t2, t3;
#else
    mlib_d64 *spa;
#endif /* MLIB_VIS2 */
    mlib_f32 *dp, df;

    NEW_LINE(2);

    dp = pbuff;

    x0 = X;      y0 = Y;
    x1 = X + dX; y1 = Y + dY;

    deltax = DOUBLE_4U16(x0, x0, x1, x1);
    deltay = DOUBLE_4U16(y0, y0, y1, y1);

#pragma pipeloop(0)
    for (i = 0; i < size/2; i++) {
      GET_POINTER(sp0);
      GET_POINTER(sp1);
      LOAD_2CH_NA();

      BL_SUM_2CH_NA();

      *dp++ = df;
    }

    if (size & 1) {
      GET_POINTER(sp0);
      sp1 = sp0;
      LOAD_2CH_NA();

      BL_SUM_2CH_NA();

      *dp++ = df;
    }

    mlib_ImageCopy_na((mlib_u8*)pbuff, dl, 2*size);
  }

  if (pbuff != buff) {
    mlib_free(pbuff);
  }

  return MLIB_SUCCESS;
}

/***************************************************************/
#undef  PREPARE_DELTAS
#define PREPARE_DELTAS                                          \
  if (warp_tbl != NULL) {                                       \
    dX = warp_tbl[2*j    ];                                     \
    dY = warp_tbl[2*j + 1];                                     \
  }

/***************************************************************/
mlib_status FUN_NAME(3ch)(mlib_affine_param *param)
{
  DECLAREVAR();
  mlib_s32 max_xsize = param -> max_xsize;
  mlib_f32 buff[BUF_SIZE], *pbuff = buff;

  if (max_xsize > BUF_SIZE) {
    pbuff = mlib_malloc(max_xsize*sizeof(mlib_f32));

    if (pbuff == NULL) return MLIB_FAILURE;
  }

  vis_write_gsr(3 << 3);

  for (j = yStart; j <= yFinish; j++) {
    mlib_d64 *sp0, *sp1, s0, s1;
    mlib_u8  *sp;

    NEW_LINE(3);

#pragma pipeloop(0)
    for (i = 0; i < size; i++) {
      GET_FILTER_XY();

      sp = *(mlib_u8**)((mlib_u8*)lineAddr + PTR_SHIFT(Y)) + 3*(X >> MLIB_SHIFT) - 1;

      vis_alignaddr(sp, 0);
      sp0 = AL_ADDR(sp, 0);
      s0 = vis_faligndata(sp0[0], sp0[1]);
      d0 = vis_fmul8x16au(vis_read_hi(s0), vis_read_hi(filterxy));
      d1 = vis_fmul8x16al(vis_read_lo(s0), vis_read_hi(filterxy));

      vis_alignaddr(sp, srcYStride);
      sp1 = AL_ADDR(sp, srcYStride);
      s1 = vis_faligndata(sp1[0], sp1[1]);
      d2 = vis_fmul8x16au(vis_read_hi(s1), vis_read_lo(filterxy));
      d3 = vis_fmul8x16al(vis_read_lo(s1), vis_read_lo(filterxy));

      vis_alignaddr((void*)0, 2);
      d0 = vis_fpadd16(d0, d2);
      dd = vis_fpadd16(k05, d1);
      dd = vis_fpadd16(dd, d3);
      d0 = vis_faligndata(d0, d0);
      dd = vis_fpadd16(dd, d0);

      pbuff[i] = vis_fpack16(dd);
      X += dX;
      Y += dY;
    }

    mlib_v_ImageChannelExtract_U8_43L_D1((mlib_u8*)pbuff, dl, size);
  }

  if (pbuff != buff) {
    mlib_free(pbuff);
  }

  return MLIB_SUCCESS;
}

/***************************************************************/
#define PROCESS_4CH(s0, s1, s2, s3)                             \
  d0 = vis_fmul8x16au(s0, vis_read_hi(filterxy));               \
  d1 = vis_fmul8x16al(s1, vis_read_hi(filterxy));               \
  d2 = vis_fmul8x16au(s2, vis_read_lo(filterxy));               \
  d3 = vis_fmul8x16al(s3, vis_read_lo(filterxy));               \
                                                                \
  dd = vis_fpadd16(d0, k05);                                    \
  d1 = vis_fpadd16(d1, d2);                                     \
  dd = vis_fpadd16(dd, d3);                                     \
  dd = vis_fpadd16(dd, d1)

/***************************************************************/
mlib_status FUN_NAME(4ch)(mlib_affine_param *param)
{
  DECLAREVAR();

  if (((mlib_s32)lineAddr[0] | (mlib_s32)dstData | srcYStride | dstYStride) & 3) {
    return FUN_NAME(4ch_na)(param);
  }

  vis_write_gsr(3 << 3);

  srcYStride >>= 2;

  for (j = yStart; j <= yFinish; j++) {
    mlib_f32 *sp, s0, s1, s2, s3;

    NEW_LINE(4);

#pragma pipeloop(0)
    for (i = 0; i < size; i++) {
      GET_FILTER_XY();

      sp = *(mlib_f32**)((mlib_u8*)lineAddr + PTR_SHIFT(Y)) + (X >> MLIB_SHIFT);
      s0 = sp[0];
      s1 = sp[1];
      s2 = sp[srcYStride];
      s3 = sp[srcYStride + 1];

      PROCESS_4CH(s0, s1, s2, s3);

      ((mlib_f32*)dl)[i] = vis_fpack16(dd);
      X += dX;
      Y += dY;
    }
  }

  return MLIB_SUCCESS;
}

/***************************************************************/
mlib_status FUN_NAME(4ch_na)(mlib_affine_param *param)
{
  DECLAREVAR();
  mlib_s32 max_xsize = param -> max_xsize;
  mlib_f32 buff[BUF_SIZE], *pbuff = buff;

  if (max_xsize > BUF_SIZE) {
    pbuff = mlib_malloc(max_xsize*sizeof(mlib_f32));

    if (pbuff == NULL) return MLIB_FAILURE;
  }

  vis_write_gsr(3 << 3);

  for (j = yStart; j <= yFinish; j++) {
    mlib_d64 *sp0, *sp1, s0, s1;
    mlib_u8  *sp;

    NEW_LINE(4);

#pragma pipeloop(0)
    for (i = 0; i < size; i++) {
      GET_FILTER_XY();

      sp = *(mlib_u8**)((mlib_u8*)lineAddr + PTR_SHIFT(Y)) + 4*(X >> MLIB_SHIFT);

      vis_alignaddr(sp, 0);
      sp0 = AL_ADDR(sp, 0);
      s0 = vis_faligndata(sp0[0], sp0[1]);

      vis_alignaddr(sp, srcYStride);
      sp1 = AL_ADDR(sp, srcYStride);
      s1 = vis_faligndata(sp1[0], sp1[1]);

      PROCESS_4CH(vis_read_hi(s0), vis_read_lo(s0), vis_read_hi(s1), vis_read_lo(s1));

      pbuff[i] = vis_fpack16(dd);
      X += dX;
      Y += dY;
    }

    mlib_ImageCopy_na((mlib_u8*)pbuff, dl, 4*size);
  }

  if (pbuff != buff) {
    mlib_free(pbuff);
  }

  return MLIB_SUCCESS;
}

/***************************************************************/
#define LUT(x)  plut[x]

mlib_status FUN_NAME(u8_i)(mlib_affine_param *param,
                           const void        *colormap)
{
  DECLAREVAR();
  mlib_s32 nchan   = mlib_ImageGetLutChannels(colormap);
  mlib_s32 lut_off = mlib_ImageGetLutOffset(colormap);
  mlib_f32 *plut = (mlib_f32*)mlib_ImageGetLutNormalTable(colormap) - lut_off;
  mlib_s32 max_xsize = param -> max_xsize;
  mlib_f32 buff[BUF_SIZE], *pbuff = buff;

  if (max_xsize > BUF_SIZE) {
    pbuff = mlib_malloc(max_xsize*sizeof(mlib_f32));

    if (pbuff == NULL) return MLIB_FAILURE;
  }

  vis_write_gsr(3 << 3);

  for (j = yStart; j <= yFinish; j++) {
    mlib_f32 s0, s1, s2, s3;
    DTYPE    *sp;

    NEW_LINE(1);

#pragma pipeloop(0)
    for (i = 0; i < size; i++) {
      GET_FILTER_XY();

      sp = *(DTYPE**)((mlib_u8*)lineAddr + PTR_SHIFT(Y)) + (X >> MLIB_SHIFT);
      s0 = LUT(sp[0]);
      s1 = LUT(sp[1]);
      s2 = LUT(sp[srcYStride]);
      s3 = LUT(sp[srcYStride + 1]);

      PROCESS_4CH(s0, s1, s2, s3);

      pbuff[i] = vis_fpack16(dd);
      X += dX;
      Y += dY;
    }

    if (nchan == 3) {
      mlib_ImageColorTrue2IndexLine_U8_U8_3_in_4((void*)pbuff, (void*)dl, size, colormap);
    } else {
      mlib_ImageColorTrue2IndexLine_U8_U8_4((void*)pbuff, (void*)dl, size, colormap);
    }
  }

  if (pbuff != buff) {
    mlib_free(pbuff);
  }

  return MLIB_SUCCESS;
}

/***************************************************************/
#undef  DTYPE
#define DTYPE mlib_s16

mlib_status FUN_NAME(s16_i)(mlib_affine_param *param,
                            const void        *colormap)
{
  DECLAREVAR();
  mlib_s32 nchan   = mlib_ImageGetLutChannels(colormap);
  mlib_s32 lut_off = mlib_ImageGetLutOffset(colormap);
  mlib_f32 *plut = (mlib_f32*)mlib_ImageGetLutNormalTable(colormap) - lut_off;
  mlib_s32 max_xsize = param -> max_xsize;
  mlib_f32 buff[BUF_SIZE], *pbuff = buff;

  srcYStride /= sizeof(DTYPE);

  if (max_xsize > BUF_SIZE) {
    pbuff = mlib_malloc(max_xsize*sizeof(mlib_f32));

    if (pbuff == NULL) return MLIB_FAILURE;
  }

  vis_write_gsr(3 << 3);

  for (j = yStart; j <= yFinish; j++) {
    mlib_f32 s0, s1, s2, s3;
    DTYPE    *sp;

    NEW_LINE(1);

#pragma pipeloop(0)
    for (i = 0; i < size; i++) {
      GET_FILTER_XY();

      sp = *(DTYPE**)((mlib_u8*)lineAddr + PTR_SHIFT(Y)) + (X >> MLIB_SHIFT);
      s0 = LUT(sp[0]);
      s1 = LUT(sp[1]);
      s2 = LUT(sp[srcYStride]);
      s3 = LUT(sp[srcYStride + 1]);

      PROCESS_4CH(s0, s1, s2, s3);

      pbuff[i] = vis_fpack16(dd);
      X += dX;
      Y += dY;
    }

    if (nchan == 3) {
      mlib_ImageColorTrue2IndexLine_U8_S16_3_in_4((void*)pbuff, (void*)dl, size, colormap);
    } else {
      mlib_ImageColorTrue2IndexLine_U8_S16_4((void*)pbuff, (void*)dl, size, colormap);
    }
  }

  if (pbuff != buff) {
    mlib_free(pbuff);
  }

  return MLIB_SUCCESS;
}

/***************************************************************/
const type_affine_i_fun mlib_AffineFunArr_bl_i[] = {
  mlib_ImageAffine_u8_u8_i_bl,
  mlib_ImageAffine_u8_u8_i_bl,
  mlib_ImageAffine_u8_s16_i_bl,
  mlib_ImageAffine_u8_s16_i_bl,
  mlib_ImageAffine_s16_u8_i_bl,
  mlib_ImageAffine_s16_u8_i_bl,
  mlib_ImageAffine_s16_s16_i_bl,
  mlib_ImageAffine_s16_s16_i_bl
};

/***************************************************************/

Other Java examples (source code examples)

Here is a short list of links related to this Java mlib_v_ImageAffine_BL.c source code file:

... this post is sponsored by my books ...

#1 New Release!

FP Best Seller

 

new blog posts

 

Copyright 1998-2024 Alvin Alexander, alvinalexander.com
All Rights Reserved.

A percentage of advertising revenue from
pages under the /java/jwarehouse URI on this website is
paid back to open source projects.