alvinalexander.com | career | drupal | java | mac | mysql | perl | scala | uml | unix  

Java example source code file (OldFloatingDecimalForTest.java)

This example Java source code file (OldFloatingDecimalForTest.java) is included in the alvinalexander.com "Java Source Code Warehouse" project. The intent of this project is to help you "Learn Java by Example" TM.

Learn more about this Java project at its project page.

Java - Java tags/keywords

mval, nan, numberformatexception, oldfdbigintfortest, oldfloatingdecimalfortest, regex, string, ulp2

The OldFloatingDecimalForTest.java Java example source code

/*
 * Copyright (c) 1996, 2013, Oracle and/or its affiliates. All rights reserved.
 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
 *
 * This code is free software; you can redistribute it and/or modify it
 * under the terms of the GNU General Public License version 2 only, as
 * published by the Free Software Foundation.
 *
 * This code is distributed in the hope that it will be useful, but WITHOUT
 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
 * version 2 for more details (a copy is included in the LICENSE file that
 * accompanied this code).
 *
 * You should have received a copy of the GNU General Public License version
 * 2 along with this work; if not, write to the Free Software Foundation,
 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
 *
 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
 * or visit www.oracle.com if you need additional information or have any
 * questions.
 */

//package sun.misc;

import sun.misc.DoubleConsts;
import sun.misc.FloatConsts;
import java.util.regex.*;

public class OldFloatingDecimalForTest{
    boolean     isExceptional;
    boolean     isNegative;
    int         decExponent;
    char        digits[];
    int         nDigits;
    int         bigIntExp;
    int         bigIntNBits;
    boolean     mustSetRoundDir = false;
    boolean     fromHex = false;
    int         roundDir = 0; // set by doubleValue

    /*
     * The fields below provides additional information about the result of
     * the binary to decimal digits conversion done in dtoa() and roundup()
     * methods. They are changed if needed by those two methods.
     */

    // True if the dtoa() binary to decimal conversion was exact.
    boolean     exactDecimalConversion = false;

    // True if the result of the binary to decimal conversion was rounded-up
    // at the end of the conversion process, i.e. roundUp() method was called.
    boolean     decimalDigitsRoundedUp = false;

    private     OldFloatingDecimalForTest( boolean negSign, int decExponent, char []digits, int n,  boolean e )
    {
        isNegative = negSign;
        isExceptional = e;
        this.decExponent = decExponent;
        this.digits = digits;
        this.nDigits = n;
    }

    /*
     * Constants of the implementation
     * Most are IEEE-754 related.
     * (There are more really boring constants at the end.)
     */
    static final long   signMask = 0x8000000000000000L;
    static final long   expMask  = 0x7ff0000000000000L;
    static final long   fractMask= ~(signMask|expMask);
    static final int    expShift = 52;
    static final int    expBias  = 1023;
    static final long   fractHOB = ( 1L< 1;
            r = p - q;
            OldFDBigIntForTest bigq =  b5p[q];
            if ( bigq == null )
                bigq = big5pow ( q );
            if ( r < small5pow.length ){
                return (b5p[p] = bigq.mult( small5pow[r] ) );
            }else{
                OldFDBigIntForTest bigr = b5p[ r ];
                if ( bigr == null )
                    bigr = big5pow( r );
                return (b5p[p] = bigq.mult( bigr ) );
            }
        }
    }

    //
    // a common operation
    //
    private static OldFDBigIntForTest
    multPow52( OldFDBigIntForTest v, int p5, int p2 ){
        if ( p5 != 0 ){
            if ( p5 < small5pow.length ){
                v = v.mult( small5pow[p5] );
            } else {
                v = v.mult( big5pow( p5 ) );
            }
        }
        if ( p2 != 0 ){
            v.lshiftMe( p2 );
        }
        return v;
    }

    //
    // another common operation
    //
    private static OldFDBigIntForTest
    constructPow52( int p5, int p2 ){
        OldFDBigIntForTest v = new OldFDBigIntForTest( big5pow( p5 ) );
        if ( p2 != 0 ){
            v.lshiftMe( p2 );
        }
        return v;
    }

    /*
     * Make a floating double into a OldFDBigIntForTest.
     * This could also be structured as a OldFDBigIntForTest
     * constructor, but we'd have to build a lot of knowledge
     * about floating-point representation into it, and we don't want to.
     *
     * AS A SIDE EFFECT, THIS METHOD WILL SET THE INSTANCE VARIABLES
     * bigIntExp and bigIntNBits
     *
     */
    private OldFDBigIntForTest
    doubleToBigInt( double dval ){
        long lbits = Double.doubleToLongBits( dval ) & ~signMask;
        int binexp = (int)(lbits >>> expShift);
        lbits &= fractMask;
        if ( binexp > 0 ){
            lbits |= fractHOB;
        } else {
            assert lbits != 0L : lbits; // doubleToBigInt(0.0)
            binexp +=1;
            while ( (lbits & fractHOB ) == 0L){
                lbits <<= 1;
                binexp -= 1;
            }
        }
        binexp -= expBias;
        int nbits = countBits( lbits );
        /*
         * We now know where the high-order 1 bit is,
         * and we know how many there are.
         */
        int lowOrderZeros = expShift+1-nbits;
        lbits >>>= lowOrderZeros;

        bigIntExp = binexp+1-nbits;
        bigIntNBits = nbits;
        return new OldFDBigIntForTest( lbits );
    }

    /*
     * Compute a number that is the ULP of the given value,
     * for purposes of addition/subtraction. Generally easy.
     * More difficult if subtracting and the argument
     * is a normalized a power of 2, as the ULP changes at these points.
     */
    private static double ulp( double dval, boolean subtracting ){
        long lbits = Double.doubleToLongBits( dval ) & ~signMask;
        int binexp = (int)(lbits >>> expShift);
        double ulpval;
        if ( subtracting && ( binexp >= expShift ) && ((lbits&fractMask) == 0L) ){
            // for subtraction from normalized, powers of 2,
            // use next-smaller exponent
            binexp -= 1;
        }
        if ( binexp > expShift ){
            ulpval = Double.longBitsToDouble( ((long)(binexp-expShift))<>1) ){
                // round up based on the low-order bits we're discarding
                lvalue++;
            }
        }
        if ( lvalue <= Integer.MAX_VALUE ){
            assert lvalue > 0L : lvalue; // lvalue <= 0
            // even easier subcase!
            // can do int arithmetic rather than long!
            int  ivalue = (int)lvalue;
            ndigits = 10;
            digits = perThreadBuffer.get();
            digitno = ndigits-1;
            c = ivalue%10;
            ivalue /= 10;
            while ( c == 0 ){
                decExponent++;
                c = ivalue%10;
                ivalue /= 10;
            }
            while ( ivalue != 0){
                digits[digitno--] = (char)(c+'0');
                decExponent++;
                c = ivalue%10;
                ivalue /= 10;
            }
            digits[digitno] = (char)(c+'0');
        } else {
            // same algorithm as above (same bugs, too )
            // but using long arithmetic.
            ndigits = 20;
            digits = perThreadBuffer.get();
            digitno = ndigits-1;
            c = (int)(lvalue%10L);
            lvalue /= 10L;
            while ( c == 0 ){
                decExponent++;
                c = (int)(lvalue%10L);
                lvalue /= 10L;
            }
            while ( lvalue != 0L ){
                digits[digitno--] = (char)(c+'0');
                decExponent++;
                c = (int)(lvalue%10L);
                lvalue /= 10;
            }
            digits[digitno] = (char)(c+'0');
        }
        char result [];
        ndigits -= digitno;
        result = new char[ ndigits ];
        System.arraycopy( digits, digitno, result, 0, ndigits );
        this.digits = result;
        this.decExponent = decExponent+1;
        this.nDigits = ndigits;
    }

    //
    // add one to the least significant digit.
    // in the unlikely event there is a carry out,
    // deal with it.
    // assert that this will only happen where there
    // is only one digit, e.g. (float)1e-44 seems to do it.
    //
    private void
    roundup(){
        int i;
        int q = digits[ i = (nDigits-1)];
        if ( q == '9' ){
            while ( q == '9' && i > 0 ){
                digits[i] = '0';
                q = digits[--i];
            }
            if ( q == '9' ){
                // carryout! High-order 1, rest 0s, larger exp.
                decExponent += 1;
                digits[0] = '1';
                return;
            }
            // else fall through.
        }
        digits[i] = (char)(q+1);
        decimalDigitsRoundedUp = true;
    }

    public boolean digitsRoundedUp() {
        return decimalDigitsRoundedUp;
    }

    /*
     * FIRST IMPORTANT CONSTRUCTOR: DOUBLE
     */
    public OldFloatingDecimalForTest( double d )
    {
        long    dBits = Double.doubleToLongBits( d );
        long    fractBits;
        int     binExp;
        int     nSignificantBits;

        // discover and delete sign
        if ( (dBits&signMask) != 0 ){
            isNegative = true;
            dBits ^= signMask;
        } else {
            isNegative = false;
        }
        // Begin to unpack
        // Discover obvious special cases of NaN and Infinity.
        binExp = (int)( (dBits&expMask) >> expShift );
        fractBits = dBits&fractMask;
        if ( binExp == (int)(expMask>>expShift) ) {
            isExceptional = true;
            if ( fractBits == 0L ){
                digits =  infinity;
            } else {
                digits = notANumber;
                isNegative = false; // NaN has no sign!
            }
            nDigits = digits.length;
            return;
        }
        isExceptional = false;
        // Finish unpacking
        // Normalize denormalized numbers.
        // Insert assumed high-order bit for normalized numbers.
        // Subtract exponent bias.
        if ( binExp == 0 ){
            if ( fractBits == 0L ){
                // not a denorm, just a 0!
                decExponent = 0;
                digits = zero;
                nDigits = 1;
                return;
            }
            while ( (fractBits&fractHOB) == 0L ){
                fractBits <<= 1;
                binExp -= 1;
            }
            nSignificantBits = expShift + binExp +1; // recall binExp is  - shift count.
            binExp += 1;
        } else {
            fractBits |= fractHOB;
            nSignificantBits = expShift+1;
        }
        binExp -= expBias;
        // call the routine that actually does all the hard work.
        dtoa( binExp, fractBits, nSignificantBits );
    }

    /*
     * SECOND IMPORTANT CONSTRUCTOR: SINGLE
     */
    public OldFloatingDecimalForTest( float f )
    {
        int     fBits = Float.floatToIntBits( f );
        int     fractBits;
        int     binExp;
        int     nSignificantBits;

        // discover and delete sign
        if ( (fBits&singleSignMask) != 0 ){
            isNegative = true;
            fBits ^= singleSignMask;
        } else {
            isNegative = false;
        }
        // Begin to unpack
        // Discover obvious special cases of NaN and Infinity.
        binExp = (fBits&singleExpMask) >> singleExpShift;
        fractBits = fBits&singleFractMask;
        if ( binExp == (singleExpMask>>singleExpShift) ) {
            isExceptional = true;
            if ( fractBits == 0L ){
                digits =  infinity;
            } else {
                digits = notANumber;
                isNegative = false; // NaN has no sign!
            }
            nDigits = digits.length;
            return;
        }
        isExceptional = false;
        // Finish unpacking
        // Normalize denormalized numbers.
        // Insert assumed high-order bit for normalized numbers.
        // Subtract exponent bias.
        if ( binExp == 0 ){
            if ( fractBits == 0 ){
                // not a denorm, just a 0!
                decExponent = 0;
                digits = zero;
                nDigits = 1;
                return;
            }
            while ( (fractBits&singleFractHOB) == 0 ){
                fractBits <<= 1;
                binExp -= 1;
            }
            nSignificantBits = singleExpShift + binExp +1; // recall binExp is  - shift count.
            binExp += 1;
        } else {
            fractBits |= singleFractHOB;
            nSignificantBits = singleExpShift+1;
        }
        binExp -= singleExpBias;
        // call the routine that actually does all the hard work.
        dtoa( binExp, ((long)fractBits)<<(expShift-singleExpShift), nSignificantBits );
    }

    private void
    dtoa( int binExp, long fractBits, int nSignificantBits )
    {
        int     nFractBits; // number of significant bits of fractBits;
        int     nTinyBits;  // number of these to the right of the point.
        int     decExp;

        // Examine number. Determine if it is an easy case,
        // which we can do pretty trivially using float/long conversion,
        // or whether we must do real work.
        nFractBits = countBits( fractBits );
        nTinyBits = Math.max( 0, nFractBits - binExp - 1 );
        if ( binExp <= maxSmallBinExp && binExp >= minSmallBinExp ){
            // Look more closely at the number to decide if,
            // with scaling by 10^nTinyBits, the result will fit in
            // a long.
            if ( (nTinyBits < long5pow.length) && ((nFractBits + n5bits[nTinyBits]) < 64 ) ){
                /*
                 * We can do this:
                 * take the fraction bits, which are normalized.
                 * (a) nTinyBits == 0: Shift left or right appropriately
                 *     to align the binary point at the extreme right, i.e.
                 *     where a long int point is expected to be. The integer
                 *     result is easily converted to a string.
                 * (b) nTinyBits > 0: Shift right by expShift-nFractBits,
                 *     which effectively converts to long and scales by
                 *     2^nTinyBits. Then multiply by 5^nTinyBits to
                 *     complete the scaling. We know this won't overflow
                 *     because we just counted the number of bits necessary
                 *     in the result. The integer you get from this can
                 *     then be converted to a string pretty easily.
                 */
                long halfULP;
                if ( nTinyBits == 0 ) {
                    if ( binExp > nSignificantBits ){
                        halfULP = 1L << ( binExp-nSignificantBits-1);
                    } else {
                        halfULP = 0L;
                    }
                    if ( binExp >= expShift ){
                        fractBits <<= (binExp-expShift);
                    } else {
                        fractBits >>>= (expShift-binExp) ;
                    }
                    developLongDigits( 0, fractBits, halfULP );
                    return;
                }
                /*
                 * The following causes excess digits to be printed
                 * out in the single-float case. Our manipulation of
                 * halfULP here is apparently not correct. If we
                 * better understand how this works, perhaps we can
                 * use this special case again. But for the time being,
                 * we do not.
                 * else {
                 *     fractBits >>>= expShift+1-nFractBits;
                 *     fractBits *= long5pow[ nTinyBits ];
                 *     halfULP = long5pow[ nTinyBits ] >> (1+nSignificantBits-nFractBits);
                 *     developLongDigits( -nTinyBits, fractBits, halfULP );
                 *     return;
                 * }
                 */
            }
        }
        /*
         * This is the hard case. We are going to compute large positive
         * integers B and S and integer decExp, s.t.
         *      d = ( B / S ) * 10^decExp
         *      1 <= B / S < 10
         * Obvious choices are:
         *      decExp = floor( log10(d) )
         *      B      = d * 2^nTinyBits * 10^max( 0, -decExp )
         *      S      = 10^max( 0, decExp) * 2^nTinyBits
         * (noting that nTinyBits has already been forced to non-negative)
         * I am also going to compute a large positive integer
         *      M      = (1/2^nSignificantBits) * 2^nTinyBits * 10^max( 0, -decExp )
         * i.e. M is (1/2) of the ULP of d, scaled like B.
         * When we iterate through dividing B/S and picking off the
         * quotient bits, we will know when to stop when the remainder
         * is <= M.
         *
         * We keep track of powers of 2 and powers of 5.
         */

        /*
         * Estimate decimal exponent. (If it is small-ish,
         * we could double-check.)
         *
         * First, scale the mantissa bits such that 1 <= d2 < 2.
         * We are then going to estimate
         *          log10(d2) ~=~  (d2-1.5)/1.5 + log(1.5)
         * and so we can estimate
         *      log10(d) ~=~ log10(d2) + binExp * log10(2)
         * take the floor and call it decExp.
         * FIXME -- use more precise constants here. It costs no more.
         */
        double d2 = Double.longBitsToDouble(
            expOne | ( fractBits &~ fractHOB ) );
        decExp = (int)Math.floor(
            (d2-1.5D)*0.289529654D + 0.176091259 + (double)binExp * 0.301029995663981 );
        int B2, B5; // powers of 2 and powers of 5, respectively, in B
        int S2, S5; // powers of 2 and powers of 5, respectively, in S
        int M2, M5; // powers of 2 and powers of 5, respectively, in M
        int Bbits; // binary digits needed to represent B, approx.
        int tenSbits; // binary digits needed to represent 10*S, approx.
        OldFDBigIntForTest Sval, Bval, Mval;

        B5 = Math.max( 0, -decExp );
        B2 = B5 + nTinyBits + binExp;

        S5 = Math.max( 0, decExp );
        S2 = S5 + nTinyBits;

        M5 = B5;
        M2 = B2 - nSignificantBits;

        /*
         * the long integer fractBits contains the (nFractBits) interesting
         * bits from the mantissa of d ( hidden 1 added if necessary) followed
         * by (expShift+1-nFractBits) zeros. In the interest of compactness,
         * I will shift out those zeros before turning fractBits into a
         * OldFDBigIntForTest. The resulting whole number will be
         *      d * 2^(nFractBits-1-binExp).
         */
        fractBits >>>= (expShift+1-nFractBits);
        B2 -= nFractBits-1;
        int common2factor = Math.min( B2, S2 );
        B2 -= common2factor;
        S2 -= common2factor;
        M2 -= common2factor;

        /*
         * HACK!! For exact powers of two, the next smallest number
         * is only half as far away as we think (because the meaning of
         * ULP changes at power-of-two bounds) for this reason, we
         * hack M2. Hope this works.
         */
        if ( nFractBits == 1 )
            M2 -= 1;

        if ( M2 < 0 ){
            // oops.
            // since we cannot scale M down far enough,
            // we must scale the other values up.
            B2 -= M2;
            S2 -= M2;
            M2 =  0;
        }
        /*
         * Construct, Scale, iterate.
         * Some day, we'll write a stopping test that takes
         * account of the asymmetry of the spacing of floating-point
         * numbers below perfect powers of 2
         * 26 Sept 96 is not that day.
         * So we use a symmetric test.
         */
        char digits[] = this.digits = new char[18];
        int  ndigit = 0;
        boolean low, high;
        long lowDigitDifference;
        int  q;

        /*
         * Detect the special cases where all the numbers we are about
         * to compute will fit in int or long integers.
         * In these cases, we will avoid doing OldFDBigIntForTest arithmetic.
         * We use the same algorithms, except that we "normalize"
         * our OldFDBigIntForTests before iterating. This is to make division easier,
         * as it makes our fist guess (quotient of high-order words)
         * more accurate!
         *
         * Some day, we'll write a stopping test that takes
         * account of the asymmetry of the spacing of floating-point
         * numbers below perfect powers of 2
         * 26 Sept 96 is not that day.
         * So we use a symmetric test.
         */
        Bbits = nFractBits + B2 + (( B5 < n5bits.length )? n5bits[B5] : ( B5*3 ));
        tenSbits = S2+1 + (( (S5+1) < n5bits.length )? n5bits[(S5+1)] : ( (S5+1)*3 ));
        if ( Bbits < 64 && tenSbits < 64){
            if ( Bbits < 32 && tenSbits < 32){
                // wa-hoo! They're all ints!
                int b = ((int)fractBits * small5pow[B5] ) << B2;
                int s = small5pow[S5] << S2;
                int m = small5pow[M5] << M2;
                int tens = s * 10;
                /*
                 * Unroll the first iteration. If our decExp estimate
                 * was too high, our first quotient will be zero. In this
                 * case, we discard it and decrement decExp.
                 */
                ndigit = 0;
                q = b / s;
                b = 10 * ( b % s );
                m *= 10;
                low  = (b <  m );
                high = (b+m > tens );
                assert q < 10 : q; // excessively large digit
                if ( (q == 0) && ! high ){
                    // oops. Usually ignore leading zero.
                    decExp--;
                } else {
                    digits[ndigit++] = (char)('0' + q);
                }
                /*
                 * HACK! Java spec sez that we always have at least
                 * one digit after the . in either F- or E-form output.
                 * Thus we will need more than one digit if we're using
                 * E-form
                 */
                if ( decExp < -3 || decExp >= 8 ){
                    high = low = false;
                }
                while( ! low && ! high ){
                    q = b / s;
                    b = 10 * ( b % s );
                    m *= 10;
                    assert q < 10 : q; // excessively large digit
                    if ( m > 0L ){
                        low  = (b <  m );
                        high = (b+m > tens );
                    } else {
                        // hack -- m might overflow!
                        // in this case, it is certainly > b,
                        // which won't
                        // and b+m > tens, too, since that has overflowed
                        // either!
                        low = true;
                        high = true;
                    }
                    digits[ndigit++] = (char)('0' + q);
                }
                lowDigitDifference = (b<<1) - tens;
                exactDecimalConversion  = (b == 0);
            } else {
                // still good! they're all longs!
                long b = (fractBits * long5pow[B5] ) << B2;
                long s = long5pow[S5] << S2;
                long m = long5pow[M5] << M2;
                long tens = s * 10L;
                /*
                 * Unroll the first iteration. If our decExp estimate
                 * was too high, our first quotient will be zero. In this
                 * case, we discard it and decrement decExp.
                 */
                ndigit = 0;
                q = (int) ( b / s );
                b = 10L * ( b % s );
                m *= 10L;
                low  = (b <  m );
                high = (b+m > tens );
                assert q < 10 : q; // excessively large digit
                if ( (q == 0) && ! high ){
                    // oops. Usually ignore leading zero.
                    decExp--;
                } else {
                    digits[ndigit++] = (char)('0' + q);
                }
                /*
                 * HACK! Java spec sez that we always have at least
                 * one digit after the . in either F- or E-form output.
                 * Thus we will need more than one digit if we're using
                 * E-form
                 */
                if ( decExp < -3 || decExp >= 8 ){
                    high = low = false;
                }
                while( ! low && ! high ){
                    q = (int) ( b / s );
                    b = 10 * ( b % s );
                    m *= 10;
                    assert q < 10 : q;  // excessively large digit
                    if ( m > 0L ){
                        low  = (b <  m );
                        high = (b+m > tens );
                    } else {
                        // hack -- m might overflow!
                        // in this case, it is certainly > b,
                        // which won't
                        // and b+m > tens, too, since that has overflowed
                        // either!
                        low = true;
                        high = true;
                    }
                    digits[ndigit++] = (char)('0' + q);
                }
                lowDigitDifference = (b<<1) - tens;
                exactDecimalConversion  = (b == 0);
            }
        } else {
            OldFDBigIntForTest ZeroVal = new OldFDBigIntForTest(0);
            OldFDBigIntForTest tenSval;
            int  shiftBias;

            /*
             * We really must do OldFDBigIntForTest arithmetic.
             * Fist, construct our OldFDBigIntForTest initial values.
             */
            Bval = multPow52( new OldFDBigIntForTest( fractBits  ), B5, B2 );
            Sval = constructPow52( S5, S2 );
            Mval = constructPow52( M5, M2 );


            // normalize so that division works better
            Bval.lshiftMe( shiftBias = Sval.normalizeMe() );
            Mval.lshiftMe( shiftBias );
            tenSval = Sval.mult( 10 );
            /*
             * Unroll the first iteration. If our decExp estimate
             * was too high, our first quotient will be zero. In this
             * case, we discard it and decrement decExp.
             */
            ndigit = 0;
            q = Bval.quoRemIteration( Sval );
            Mval = Mval.mult( 10 );
            low  = (Bval.cmp( Mval ) < 0);
            high = (Bval.add( Mval ).cmp( tenSval ) > 0 );
            assert q < 10 : q; // excessively large digit
            if ( (q == 0) && ! high ){
                // oops. Usually ignore leading zero.
                decExp--;
            } else {
                digits[ndigit++] = (char)('0' + q);
            }
            /*
             * HACK! Java spec sez that we always have at least
             * one digit after the . in either F- or E-form output.
             * Thus we will need more than one digit if we're using
             * E-form
             */
            if ( decExp < -3 || decExp >= 8 ){
                high = low = false;
            }
            while( ! low && ! high ){
                q = Bval.quoRemIteration( Sval );
                Mval = Mval.mult( 10 );
                assert q < 10 : q;  // excessively large digit
                low  = (Bval.cmp( Mval ) < 0);
                high = (Bval.add( Mval ).cmp( tenSval ) > 0 );
                digits[ndigit++] = (char)('0' + q);
            }
            if ( high && low ){
                Bval.lshiftMe(1);
                lowDigitDifference = Bval.cmp(tenSval);
            } else {
                lowDigitDifference = 0L; // this here only for flow analysis!
            }
            exactDecimalConversion  = (Bval.cmp( ZeroVal ) == 0);
        }
        this.decExponent = decExp+1;
        this.digits = digits;
        this.nDigits = ndigit;
        /*
         * Last digit gets rounded based on stopping condition.
         */
        if ( high ){
            if ( low ){
                if ( lowDigitDifference == 0L ){
                    // it's a tie!
                    // choose based on which digits we like.
                    if ( (digits[nDigits-1]&1) != 0 ) roundup();
                } else if ( lowDigitDifference > 0 ){
                    roundup();
                }
            } else {
                roundup();
            }
        }
    }

    public boolean decimalDigitsExact() {
        return exactDecimalConversion;
    }

    public String
    toString(){
        // most brain-dead version
        StringBuffer result = new StringBuffer( nDigits+8 );
        if ( isNegative ){ result.append( '-' ); }
        if ( isExceptional ){
            result.append( digits, 0, nDigits );
        } else {
            result.append( "0.");
            result.append( digits, 0, nDigits );
            result.append('e');
            result.append( decExponent );
        }
        return new String(result);
    }

    public String toJavaFormatString() {
        char result[] = perThreadBuffer.get();
        int i = getChars(result);
        return new String(result, 0, i);
    }

    private int getChars(char[] result) {
        assert nDigits <= 19 : nDigits; // generous bound on size of nDigits
        int i = 0;
        if (isNegative) { result[0] = '-'; i = 1; }
        if (isExceptional) {
            System.arraycopy(digits, 0, result, i, nDigits);
            i += nDigits;
        } else {
            if (decExponent > 0 && decExponent < 8) {
                // print digits.digits.
                int charLength = Math.min(nDigits, decExponent);
                System.arraycopy(digits, 0, result, i, charLength);
                i += charLength;
                if (charLength < decExponent) {
                    charLength = decExponent-charLength;
                    System.arraycopy(zero, 0, result, i, charLength);
                    i += charLength;
                    result[i++] = '.';
                    result[i++] = '0';
                } else {
                    result[i++] = '.';
                    if (charLength < nDigits) {
                        int t = nDigits - charLength;
                        System.arraycopy(digits, charLength, result, i, t);
                        i += t;
                    } else {
                        result[i++] = '0';
                    }
                }
            } else if (decExponent <=0 && decExponent > -3) {
                result[i++] = '0';
                result[i++] = '.';
                if (decExponent != 0) {
                    System.arraycopy(zero, 0, result, i, -decExponent);
                    i -= decExponent;
                }
                System.arraycopy(digits, 0, result, i, nDigits);
                i += nDigits;
            } else {
                result[i++] = digits[0];
                result[i++] = '.';
                if (nDigits > 1) {
                    System.arraycopy(digits, 1, result, i, nDigits-1);
                    i += nDigits-1;
                } else {
                    result[i++] = '0';
                }
                result[i++] = 'E';
                int e;
                if (decExponent <= 0) {
                    result[i++] = '-';
                    e = -decExponent+1;
                } else {
                    e = decExponent-1;
                }
                // decExponent has 1, 2, or 3, digits
                if (e <= 9) {
                    result[i++] = (char)(e+'0');
                } else if (e <= 99) {
                    result[i++] = (char)(e/10 +'0');
                    result[i++] = (char)(e%10 + '0');
                } else {
                    result[i++] = (char)(e/100+'0');
                    e %= 100;
                    result[i++] = (char)(e/10+'0');
                    result[i++] = (char)(e%10 + '0');
                }
            }
        }
        return i;
    }

    // Per-thread buffer for string/stringbuffer conversion
    private static ThreadLocal<char[]> perThreadBuffer = new ThreadLocal() {
            protected synchronized char[] initialValue() {
                return new char[26];
            }
        };

    public void appendTo(Appendable buf) {
          char result[] = perThreadBuffer.get();
          int i = getChars(result);
        if (buf instanceof StringBuilder)
            ((StringBuilder) buf).append(result, 0, i);
        else if (buf instanceof StringBuffer)
            ((StringBuffer) buf).append(result, 0, i);
        else
            assert false;
    }

    @SuppressWarnings("fallthrough")
    public static OldFloatingDecimalForTest
    readJavaFormatString( String in ) throws NumberFormatException {
        boolean isNegative = false;
        boolean signSeen   = false;
        int     decExp;
        char    c;

    parseNumber:
        try{
            in = in.trim(); // don't fool around with white space.
                            // throws NullPointerException if null
            int l = in.length();
            if ( l == 0 ) throw new NumberFormatException("empty String");
            int i = 0;
            switch ( c = in.charAt( i ) ){
            case '-':
                isNegative = true;
                //FALLTHROUGH
            case '+':
                i++;
                signSeen = true;
            }

            // Check for NaN and Infinity strings
            c = in.charAt(i);
            if(c == 'N' || c == 'I') { // possible NaN or infinity
                boolean potentialNaN = false;
                char targetChars[] = null;  // char array of "NaN" or "Infinity"

                if(c == 'N') {
                    targetChars = notANumber;
                    potentialNaN = true;
                } else {
                    targetChars = infinity;
                }

                // compare Input string to "NaN" or "Infinity"
                int j = 0;
                while(i < l && j < targetChars.length) {
                    if(in.charAt(i) == targetChars[j]) {
                        i++; j++;
                    }
                    else // something is amiss, throw exception
                        break parseNumber;
                }

                // For the candidate string to be a NaN or infinity,
                // all characters in input string and target char[]
                // must be matched ==> j must equal targetChars.length
                // and i must equal l
                if( (j == targetChars.length) && (i == l) ) { // return NaN or infinity
                    return (potentialNaN ? new OldFloatingDecimalForTest(Double.NaN) // NaN has no sign
                            : new OldFloatingDecimalForTest(isNegative?
                                                  Double.NEGATIVE_INFINITY:
                                                  Double.POSITIVE_INFINITY)) ;
                }
                else { // something went wrong, throw exception
                    break parseNumber;
                }

            } else if (c == '0')  { // check for hexadecimal floating-point number
                if (l > i+1 ) {
                    char ch = in.charAt(i+1);
                    if (ch == 'x' || ch == 'X' ) // possible hex string
                        return parseHexString(in);
                }
            }  // look for and process decimal floating-point string

            char[] digits = new char[ l ];
            int    nDigits= 0;
            boolean decSeen = false;
            int decPt = 0;
            int nLeadZero = 0;
            int nTrailZero= 0;
        digitLoop:
            while ( i < l ){
                switch ( c = in.charAt( i ) ){
                case '0':
                    if ( nDigits > 0 ){
                        nTrailZero += 1;
                    } else {
                        nLeadZero += 1;
                    }
                    break; // out of switch.
                case '1':
                case '2':
                case '3':
                case '4':
                case '5':
                case '6':
                case '7':
                case '8':
                case '9':
                    while ( nTrailZero > 0 ){
                        digits[nDigits++] = '0';
                        nTrailZero -= 1;
                    }
                    digits[nDigits++] = c;
                    break; // out of switch.
                case '.':
                    if ( decSeen ){
                        // already saw one ., this is the 2nd.
                        throw new NumberFormatException("multiple points");
                    }
                    decPt = i;
                    if ( signSeen ){
                        decPt -= 1;
                    }
                    decSeen = true;
                    break; // out of switch.
                default:
                    break digitLoop;
                }
                i++;
            }
            /*
             * At this point, we've scanned all the digits and decimal
             * point we're going to see. Trim off leading and trailing
             * zeros, which will just confuse us later, and adjust
             * our initial decimal exponent accordingly.
             * To review:
             * we have seen i total characters.
             * nLeadZero of them were zeros before any other digits.
             * nTrailZero of them were zeros after any other digits.
             * if ( decSeen ), then a . was seen after decPt characters
             * ( including leading zeros which have been discarded )
             * nDigits characters were neither lead nor trailing
             * zeros, nor point
             */
            /*
             * special hack: if we saw no non-zero digits, then the
             * answer is zero!
             * Unfortunately, we feel honor-bound to keep parsing!
             */
            if ( nDigits == 0 ){
                digits = zero;
                nDigits = 1;
                if ( nLeadZero == 0 ){
                    // we saw NO DIGITS AT ALL,
                    // not even a crummy 0!
                    // this is not allowed.
                    break parseNumber; // go throw exception
                }

            }

            /* Our initial exponent is decPt, adjusted by the number of
             * discarded zeros. Or, if there was no decPt,
             * then its just nDigits adjusted by discarded trailing zeros.
             */
            if ( decSeen ){
                decExp = decPt - nLeadZero;
            } else {
                decExp = nDigits+nTrailZero;
            }

            /*
             * Look for 'e' or 'E' and an optionally signed integer.
             */
            if ( (i < l) &&  (((c = in.charAt(i) )=='e') || (c == 'E') ) ){
                int expSign = 1;
                int expVal  = 0;
                int reallyBig = Integer.MAX_VALUE / 10;
                boolean expOverflow = false;
                switch( in.charAt(++i) ){
                case '-':
                    expSign = -1;
                    //FALLTHROUGH
                case '+':
                    i++;
                }
                int expAt = i;
            expLoop:
                while ( i < l  ){
                    if ( expVal >= reallyBig ){
                        // the next character will cause integer
                        // overflow.
                        expOverflow = true;
                    }
                    switch ( c = in.charAt(i++) ){
                    case '0':
                    case '1':
                    case '2':
                    case '3':
                    case '4':
                    case '5':
                    case '6':
                    case '7':
                    case '8':
                    case '9':
                        expVal = expVal*10 + ( (int)c - (int)'0' );
                        continue;
                    default:
                        i--;           // back up.
                        break expLoop; // stop parsing exponent.
                    }
                }
                int expLimit = bigDecimalExponent+nDigits+nTrailZero;
                if ( expOverflow || ( expVal > expLimit ) ){
                    //
                    // The intent here is to end up with
                    // infinity or zero, as appropriate.
                    // The reason for yielding such a small decExponent,
                    // rather than something intuitive such as
                    // expSign*Integer.MAX_VALUE, is that this value
                    // is subject to further manipulation in
                    // doubleValue() and floatValue(), and I don't want
                    // it to be able to cause overflow there!
                    // (The only way we can get into trouble here is for
                    // really outrageous nDigits+nTrailZero, such as 2 billion. )
                    //
                    decExp = expSign*expLimit;
                } else {
                    // this should not overflow, since we tested
                    // for expVal > (MAX+N), where N >= abs(decExp)
                    decExp = decExp + expSign*expVal;
                }

                // if we saw something not a digit ( or end of string )
                // after the [Ee][+-], without seeing any digits at all
                // this is certainly an error. If we saw some digits,
                // but then some trailing garbage, that might be ok.
                // so we just fall through in that case.
                // HUMBUG
                if ( i == expAt )
                    break parseNumber; // certainly bad
            }
            /*
             * We parsed everything we could.
             * If there are leftovers, then this is not good input!
             */
            if ( i < l &&
                ((i != l - 1) ||
                (in.charAt(i) != 'f' &&
                 in.charAt(i) != 'F' &&
                 in.charAt(i) != 'd' &&
                 in.charAt(i) != 'D'))) {
                break parseNumber; // go throw exception
            }

            return new OldFloatingDecimalForTest( isNegative, decExp, digits, nDigits,  false );
        } catch ( StringIndexOutOfBoundsException e ){ }
        throw new NumberFormatException("For input string: \"" + in + "\"");
    }

    /*
     * Take a FloatingDecimal, which we presumably just scanned in,
     * and find out what its value is, as a double.
     *
     * AS A SIDE EFFECT, SET roundDir TO INDICATE PREFERRED
     * ROUNDING DIRECTION in case the result is really destined
     * for a single-precision float.
     */

    public strictfp double doubleValue(){
        int     kDigits = Math.min( nDigits, maxDecimalDigits+1 );
        long    lValue;
        double  dValue;
        double  rValue, tValue;

        // First, check for NaN and Infinity values
        if(digits == infinity || digits == notANumber) {
            if(digits == notANumber)
                return Double.NaN;
            else
                return (isNegative?Double.NEGATIVE_INFINITY:Double.POSITIVE_INFINITY);
        }
        else {
            if (mustSetRoundDir) {
                roundDir = 0;
            }
            /*
             * convert the lead kDigits to a long integer.
             */
            // (special performance hack: start to do it using int)
            int iValue = (int)digits[0]-(int)'0';
            int iDigits = Math.min( kDigits, intDecimalDigits );
            for ( int i=1; i < iDigits; i++ ){
                iValue = iValue*10 + (int)digits[i]-(int)'0';
            }
            lValue = (long)iValue;
            for ( int i=iDigits; i < kDigits; i++ ){
                lValue = lValue*10L + (long)((int)digits[i]-(int)'0');
            }
            dValue = (double)lValue;
            int exp = decExponent-kDigits;
            /*
             * lValue now contains a long integer with the value of
             * the first kDigits digits of the number.
             * dValue contains the (double) of the same.
             */

            if ( nDigits <= maxDecimalDigits ){
                /*
                 * possibly an easy case.
                 * We know that the digits can be represented
                 * exactly. And if the exponent isn't too outrageous,
                 * the whole thing can be done with one operation,
                 * thus one rounding error.
                 * Note that all our constructors trim all leading and
                 * trailing zeros, so simple values (including zero)
                 * will always end up here
                 */
                if (exp == 0 || dValue == 0.0)
                    return (isNegative)? -dValue : dValue; // small floating integer
                else if ( exp >= 0 ){
                    if ( exp <= maxSmallTen ){
                        /*
                         * Can get the answer with one operation,
                         * thus one roundoff.
                         */
                        rValue = dValue * small10pow[exp];
                        if ( mustSetRoundDir ){
                            tValue = rValue / small10pow[exp];
                            roundDir = ( tValue ==  dValue ) ? 0
                                :( tValue < dValue ) ? 1
                                : -1;
                        }
                        return (isNegative)? -rValue : rValue;
                    }
                    int slop = maxDecimalDigits - kDigits;
                    if ( exp <= maxSmallTen+slop ){
                        /*
                         * We can multiply dValue by 10^(slop)
                         * and it is still "small" and exact.
                         * Then we can multiply by 10^(exp-slop)
                         * with one rounding.
                         */
                        dValue *= small10pow[slop];
                        rValue = dValue * small10pow[exp-slop];

                        if ( mustSetRoundDir ){
                            tValue = rValue / small10pow[exp-slop];
                            roundDir = ( tValue ==  dValue ) ? 0
                                :( tValue < dValue ) ? 1
                                : -1;
                        }
                        return (isNegative)? -rValue : rValue;
                    }
                    /*
                     * Else we have a hard case with a positive exp.
                     */
                } else {
                    if ( exp >= -maxSmallTen ){
                        /*
                         * Can get the answer in one division.
                         */
                        rValue = dValue / small10pow[-exp];
                        tValue = rValue * small10pow[-exp];
                        if ( mustSetRoundDir ){
                            roundDir = ( tValue ==  dValue ) ? 0
                                :( tValue < dValue ) ? 1
                                : -1;
                        }
                        return (isNegative)? -rValue : rValue;
                    }
                    /*
                     * Else we have a hard case with a negative exp.
                     */
                }
            }

            /*
             * Harder cases:
             * The sum of digits plus exponent is greater than
             * what we think we can do with one error.
             *
             * Start by approximating the right answer by,
             * naively, scaling by powers of 10.
             */
            if ( exp > 0 ){
                if ( decExponent > maxDecimalExponent+1 ){
                    /*
                     * Lets face it. This is going to be
                     * Infinity. Cut to the chase.
                     */
                    return (isNegative)? Double.NEGATIVE_INFINITY : Double.POSITIVE_INFINITY;
                }
                if ( (exp&15) != 0 ){
                    dValue *= small10pow[exp&15];
                }
                if ( (exp>>=4) != 0 ){
                    int j;
                    for( j = 0; exp > 1; j++, exp>>=1 ){
                        if ( (exp&1)!=0)
                            dValue *= big10pow[j];
                    }
                    /*
                     * The reason for the weird exp > 1 condition
                     * in the above loop was so that the last multiply
                     * would get unrolled. We handle it here.
                     * It could overflow.
                     */
                    double t = dValue * big10pow[j];
                    if ( Double.isInfinite( t ) ){
                        /*
                         * It did overflow.
                         * Look more closely at the result.
                         * If the exponent is just one too large,
                         * then use the maximum finite as our estimate
                         * value. Else call the result infinity
                         * and punt it.
                         * ( I presume this could happen because
                         * rounding forces the result here to be
                         * an ULP or two larger than
                         * Double.MAX_VALUE ).
                         */
                        t = dValue / 2.0;
                        t *= big10pow[j];
                        if ( Double.isInfinite( t ) ){
                            return (isNegative)? Double.NEGATIVE_INFINITY : Double.POSITIVE_INFINITY;
                        }
                        t = Double.MAX_VALUE;
                    }
                    dValue = t;
                }
            } else if ( exp < 0 ){
                exp = -exp;
                if ( decExponent < minDecimalExponent-1 ){
                    /*
                     * Lets face it. This is going to be
                     * zero. Cut to the chase.
                     */
                    return (isNegative)? -0.0 : 0.0;
                }
                if ( (exp&15) != 0 ){
                    dValue /= small10pow[exp&15];
                }
                if ( (exp>>=4) != 0 ){
                    int j;
                    for( j = 0; exp > 1; j++, exp>>=1 ){
                        if ( (exp&1)!=0)
                            dValue *= tiny10pow[j];
                    }
                    /*
                     * The reason for the weird exp > 1 condition
                     * in the above loop was so that the last multiply
                     * would get unrolled. We handle it here.
                     * It could underflow.
                     */
                    double t = dValue * tiny10pow[j];
                    if ( t == 0.0 ){
                        /*
                         * It did underflow.
                         * Look more closely at the result.
                         * If the exponent is just one too small,
                         * then use the minimum finite as our estimate
                         * value. Else call the result 0.0
                         * and punt it.
                         * ( I presume this could happen because
                         * rounding forces the result here to be
                         * an ULP or two less than
                         * Double.MIN_VALUE ).
                         */
                        t = dValue * 2.0;
                        t *= tiny10pow[j];
                        if ( t == 0.0 ){
                            return (isNegative)? -0.0 : 0.0;
                        }
                        t = Double.MIN_VALUE;
                    }
                    dValue = t;
                }
            }

            /*
             * dValue is now approximately the result.
             * The hard part is adjusting it, by comparison
             * with OldFDBigIntForTest arithmetic.
             * Formulate the EXACT big-number result as
             * bigD0 * 10^exp
             */
            OldFDBigIntForTest bigD0 = new OldFDBigIntForTest( lValue, digits, kDigits, nDigits );
            exp   = decExponent - nDigits;

            correctionLoop:
            while(true){
                /* AS A SIDE EFFECT, THIS METHOD WILL SET THE INSTANCE VARIABLES
                 * bigIntExp and bigIntNBits
                 */
                OldFDBigIntForTest bigB = doubleToBigInt( dValue );

                /*
                 * Scale bigD, bigB appropriately for
                 * big-integer operations.
                 * Naively, we multiply by powers of ten
                 * and powers of two. What we actually do
                 * is keep track of the powers of 5 and
                 * powers of 2 we would use, then factor out
                 * common divisors before doing the work.
                 */
                int B2, B5; // powers of 2, 5 in bigB
                int     D2, D5; // powers of 2, 5 in bigD
                int Ulp2;   // powers of 2 in halfUlp.
                if ( exp >= 0 ){
                    B2 = B5 = 0;
                    D2 = D5 = exp;
                } else {
                    B2 = B5 = -exp;
                    D2 = D5 = 0;
                }
                if ( bigIntExp >= 0 ){
                    B2 += bigIntExp;
                } else {
                    D2 -= bigIntExp;
                }
                Ulp2 = B2;
                // shift bigB and bigD left by a number s. t.
                // halfUlp is still an integer.
                int hulpbias;
                if ( bigIntExp+bigIntNBits <= -expBias+1 ){
                    // This is going to be a denormalized number
                    // (if not actually zero).
                    // half an ULP is at 2^-(expBias+expShift+1)
                    hulpbias = bigIntExp+ expBias + expShift;
                } else {
                    hulpbias = expShift + 2 - bigIntNBits;
                }
                B2 += hulpbias;
                D2 += hulpbias;
                // if there are common factors of 2, we might just as well
                // factor them out, as they add nothing useful.
                int common2 = Math.min( B2, Math.min( D2, Ulp2 ) );
                B2 -= common2;
                D2 -= common2;
                Ulp2 -= common2;
                // do multiplications by powers of 5 and 2
                bigB = multPow52( bigB, B5, B2 );
                OldFDBigIntForTest bigD = multPow52( new OldFDBigIntForTest( bigD0 ), D5, D2 );
                //
                // to recap:
                // bigB is the scaled-big-int version of our floating-point
                // candidate.
                // bigD is the scaled-big-int version of the exact value
                // as we understand it.
                // halfUlp is 1/2 an ulp of bigB, except for special cases
                // of exact powers of 2
                //
                // the plan is to compare bigB with bigD, and if the difference
                // is less than halfUlp, then we're satisfied. Otherwise,
                // use the ratio of difference to halfUlp to calculate a fudge
                // factor to add to the floating value, then go 'round again.
                //
                OldFDBigIntForTest diff;
                int cmpResult;
                boolean overvalue;
                if ( (cmpResult = bigB.cmp( bigD ) ) > 0 ){
                    overvalue = true; // our candidate is too big.
                    diff = bigB.sub( bigD );
                    if ( (bigIntNBits == 1) && (bigIntExp > -expBias+1) ){
                        // candidate is a normalized exact power of 2 and
                        // is too big. We will be subtracting.
                        // For our purposes, ulp is the ulp of the
                        // next smaller range.
                        Ulp2 -= 1;
                        if ( Ulp2 < 0 ){
                            // rats. Cannot de-scale ulp this far.
                            // must scale diff in other direction.
                            Ulp2 = 0;
                            diff.lshiftMe( 1 );
                        }
                    }
                } else if ( cmpResult < 0 ){
                    overvalue = false; // our candidate is too small.
                    diff = bigD.sub( bigB );
                } else {
                    // the candidate is exactly right!
                    // this happens with surprising frequency
                    break correctionLoop;
                }
                OldFDBigIntForTest halfUlp = constructPow52( B5, Ulp2 );
                if ( (cmpResult = diff.cmp( halfUlp ) ) < 0 ){
                    // difference is small.
                    // this is close enough
                    if (mustSetRoundDir) {
                        roundDir = overvalue ? -1 : 1;
                    }
                    break correctionLoop;
                } else if ( cmpResult == 0 ){
                    // difference is exactly half an ULP
                    // round to some other value maybe, then finish
                    dValue += 0.5*ulp( dValue, overvalue );
                    // should check for bigIntNBits == 1 here??
                    if (mustSetRoundDir) {
                        roundDir = overvalue ? -1 : 1;
                    }
                    break correctionLoop;
                } else {
                    // difference is non-trivial.
                    // could scale addend by ratio of difference to
                    // halfUlp here, if we bothered to compute that difference.
                    // Most of the time ( I hope ) it is about 1 anyway.
                    dValue += ulp( dValue, overvalue );
                    if ( dValue == 0.0 || dValue == Double.POSITIVE_INFINITY )
                        break correctionLoop; // oops. Fell off end of range.
                    continue; // try again.
                }

            }
            return (isNegative)? -dValue : dValue;
        }
    }

    /*
     * Take a FloatingDecimal, which we presumably just scanned in,
     * and find out what its value is, as a float.
     * This is distinct from doubleValue() to avoid the extremely
     * unlikely case of a double rounding error, wherein the conversion
     * to double has one rounding error, and the conversion of that double
     * to a float has another rounding error, IN THE WRONG DIRECTION,
     * ( because of the preference to a zero low-order bit ).
     */

    public strictfp float floatValue(){
        int     kDigits = Math.min( nDigits, singleMaxDecimalDigits+1 );
        int     iValue;
        float   fValue;

        // First, check for NaN and Infinity values
        if(digits == infinity || digits == notANumber) {
            if(digits == notANumber)
                return Float.NaN;
            else
                return (isNegative?Float.NEGATIVE_INFINITY:Float.POSITIVE_INFINITY);
        }
        else {
            /*
             * convert the lead kDigits to an integer.
             */
            iValue = (int)digits[0]-(int)'0';
            for ( int i=1; i < kDigits; i++ ){
                iValue = iValue*10 + (int)digits[i]-(int)'0';
            }
            fValue = (float)iValue;
            int exp = decExponent-kDigits;
            /*
             * iValue now contains an integer with the value of
             * the first kDigits digits of the number.
             * fValue contains the (float) of the same.
             */

            if ( nDigits <= singleMaxDecimalDigits ){
                /*
                 * possibly an easy case.
                 * We know that the digits can be represented
                 * exactly. And if the exponent isn't too outrageous,
                 * the whole thing can be done with one operation,
                 * thus one rounding error.
                 * Note that all our constructors trim all leading and
                 * trailing zeros, so simple values (including zero)
                 * will always end up here.
                 */
                if (exp == 0 || fValue == 0.0f)
                    return (isNegative)? -fValue : fValue; // small floating integer
                else if ( exp >= 0 ){
                    if ( exp <= singleMaxSmallTen ){
                        /*
                         * Can get the answer with one operation,
                         * thus one roundoff.
                         */
                        fValue *= singleSmall10pow[exp];
                        return (isNegative)? -fValue : fValue;
                    }
                    int slop = singleMaxDecimalDigits - kDigits;
                    if ( exp <= singleMaxSmallTen+slop ){
                        /*
                         * We can multiply dValue by 10^(slop)
                         * and it is still "small" and exact.
                         * Then we can multiply by 10^(exp-slop)
                         * with one rounding.
                         */
                        fValue *= singleSmall10pow[slop];
                        fValue *= singleSmall10pow[exp-slop];
                        return (isNegative)? -fValue : fValue;
                    }
                    /*
                     * Else we have a hard case with a positive exp.
                     */
                } else {
                    if ( exp >= -singleMaxSmallTen ){
                        /*
                         * Can get the answer in one division.
                         */
                        fValue /= singleSmall10pow[-exp];
                        return (isNegative)? -fValue : fValue;
                    }
                    /*
                     * Else we have a hard case with a negative exp.
                     */
                }
            } else if ( (decExponent >= nDigits) && (nDigits+decExponent <= maxDecimalDigits) ){
                /*
                 * In double-precision, this is an exact floating integer.
                 * So we can compute to double, then shorten to float
                 * with one round, and get the right answer.
                 *
                 * First, finish accumulating digits.
                 * Then convert that integer to a double, multiply
                 * by the appropriate power of ten, and convert to float.
                 */
                long lValue = (long)iValue;
                for ( int i=kDigits; i < nDigits; i++ ){
                    lValue = lValue*10L + (long)((int)digits[i]-(int)'0');
                }
                double dValue = (double)lValue;
                exp = decExponent-nDigits;
                dValue *= small10pow[exp];
                fValue = (float)dValue;
                return (isNegative)? -fValue : fValue;

            }
            /*
             * Harder cases:
             * The sum of digits plus exponent is greater than
             * what we think we can do with one error.
             *
             * Start by weeding out obviously out-of-range
             * results, then convert to double and go to
             * common hard-case code.
             */
            if ( decExponent > singleMaxDecimalExponent+1 ){
                /*
                 * Lets face it. This is going to be
                 * Infinity. Cut to the chase.
                 */
                return (isNegative)? Float.NEGATIVE_INFINITY : Float.POSITIVE_INFINITY;
            } else if ( decExponent < singleMinDecimalExponent-1 ){
                /*
                 * Lets face it. This is going to be
                 * zero. Cut to the chase.
                 */
                return (isNegative)? -0.0f : 0.0f;
            }

            /*
             * Here, we do 'way too much work, but throwing away
             * our partial results, and going and doing the whole
             * thing as double, then throwing away half the bits that computes
             * when we convert back to float.
             *
             * The alternative is to reproduce the whole multiple-precision
             * algorithm for float precision, or to try to parameterize it
             * for common usage. The former will take about 400 lines of code,
             * and the latter I tried without success. Thus the semi-hack
             * answer here.
             */
            mustSetRoundDir = !fromHex;
            double dValue = doubleValue();
            return stickyRound( dValue );
        }
    }


    /*
     * All the positive powers of 10 that can be
     * represented exactly in double/float.
     */
    private static final double small10pow[] = {
        1.0e0,
        1.0e1, 1.0e2, 1.0e3, 1.0e4, 1.0e5,
        1.0e6, 1.0e7, 1.0e8, 1.0e9, 1.0e10,
        1.0e11, 1.0e12, 1.0e13, 1.0e14, 1.0e15,
        1.0e16, 1.0e17, 1.0e18, 1.0e19, 1.0e20,
        1.0e21, 1.0e22
    };

    private static final float singleSmall10pow[] = {
        1.0e0f,
        1.0e1f, 1.0e2f, 1.0e3f, 1.0e4f, 1.0e5f,
        1.0e6f, 1.0e7f, 1.0e8f, 1.0e9f, 1.0e10f
    };

    private static final double big10pow[] = {
        1e16, 1e32, 1e64, 1e128, 1e256 };
    private static final double tiny10pow[] = {
        1e-16, 1e-32, 1e-64, 1e-128, 1e-256 };

    private static final int maxSmallTen = small10pow.length-1;
    private static final int singleMaxSmallTen = singleSmall10pow.length-1;

    private static final int small5pow[] = {
        1,
        5,
        5*5,
        5*5*5,
        5*5*5*5,
        5*5*5*5*5,
        5*5*5*5*5*5,
        5*5*5*5*5*5*5,
        5*5*5*5*5*5*5*5,
        5*5*5*5*5*5*5*5*5,
        5*5*5*5*5*5*5*5*5*5,
        5*5*5*5*5*5*5*5*5*5*5,
        5*5*5*5*5*5*5*5*5*5*5*5,
        5*5*5*5*5*5*5*5*5*5*5*5*5
    };


    private static final long long5pow[] = {
        1L,
        5L,
        5L*5,
        5L*5*5,
        5L*5*5*5,
        5L*5*5*5*5,
        5L*5*5*5*5*5,
        5L*5*5*5*5*5*5,
        5L*5*5*5*5*5*5*5,
        5L*5*5*5*5*5*5*5*5,
        5L*5*5*5*5*5*5*5*5*5,
        5L*5*5*5*5*5*5*5*5*5*5,
        5L*5*5*5*5*5*5*5*5*5*5*5,
        5L*5*5*5*5*5*5*5*5*5*5*5*5,
        5L*5*5*5*5*5*5*5*5*5*5*5*5*5,
        5L*5*5*5*5*5*5*5*5*5*5*5*5*5*5,
        5L*5*5*5*5*5*5*5*5*5*5*5*5*5*5*5,
        5L*5*5*5*5*5*5*5*5*5*5*5*5*5*5*5*5,
        5L*5*5*5*5*5*5*5*5*5*5*5*5*5*5*5*5*5,
        5L*5*5*5*5*5*5*5*5*5*5*5*5*5*5*5*5*5*5,
        5L*5*5*5*5*5*5*5*5*5*5*5*5*5*5*5*5*5*5*5,
        5L*5*5*5*5*5*5*5*5*5*5*5*5*5*5*5*5*5*5*5*5,
        5L*5*5*5*5*5*5*5*5*5*5*5*5*5*5*5*5*5*5*5*5*5,
        5L*5*5*5*5*5*5*5*5*5*5*5*5*5*5*5*5*5*5*5*5*5*5,
        5L*5*5*5*5*5*5*5*5*5*5*5*5*5*5*5*5*5*5*5*5*5*5*5,
        5L*5*5*5*5*5*5*5*5*5*5*5*5*5*5*5*5*5*5*5*5*5*5*5*5,
        5L*5*5*5*5*5*5*5*5*5*5*5*5*5*5*5*5*5*5*5*5*5*5*5*5*5,
    };

    // approximately ceil( log2( long5pow[i] ) )
    private static final int n5bits[] = {
        0,
        3,
        5,
        7,
        10,
        12,
        14,
        17,
        19,
        21,
        24,
        26,
        28,
        31,
        33,
        35,
        38,
        40,
        42,
        45,
        47,
        49,
        52,
        54,
        56,
        59,
        61,
    };

    private static final char infinity[] = { 'I', 'n', 'f', 'i', 'n', 'i', 't', 'y' };
    private static final char notANumber[] = { 'N', 'a', 'N' };
    private static final char zero[] = { '0', '0', '0', '0', '0', '0', '0', '0' };


    /*
     * Grammar is compatible with hexadecimal floating-point constants
     * described in section 6.4.4.2 of the C99 specification.
     */
    private static Pattern hexFloatPattern = null;
    private static synchronized Pattern getHexFloatPattern() {
        if (hexFloatPattern == null) {
           hexFloatPattern = Pattern.compile(
                   //1           234                   56                7                   8      9
                    "([-+])?0[xX](((\\p{XDigit}+)\\.?)|((\\p{XDigit}*)\\.(\\p{XDigit}+)))[pP]([-+])?(\\p{Digit}+)[fFdD]?"
                    );
        }
        return hexFloatPattern;
    }

    /*
     * Convert string s to a suitable floating decimal; uses the
     * double constructor and set the roundDir variable appropriately
     * in case the value is later converted to a float.
     */
   static OldFloatingDecimalForTest parseHexString(String s) {
        // Verify string is a member of the hexadecimal floating-point
        // string language.
        Matcher m = getHexFloatPattern().matcher(s);
        boolean validInput = m.matches();

        if (!validInput) {
            // Input does not match pattern
            throw new NumberFormatException("For input string: \"" + s + "\"");
        } else { // validInput
            /*
             * We must isolate the sign, significand, and exponent
             * fields.  The sign value is straightforward.  Since
             * floating-point numbers are stored with a normalized
             * representation, the significand and exponent are
             * interrelated.
             *
             * After extracting the sign, we normalized the
             * significand as a hexadecimal value, calculating an
             * exponent adjust for any shifts made during
             * normalization.  If the significand is zero, the
             * exponent doesn't need to be examined since the output
             * will be zero.
             *
             * Next the exponent in the input string is extracted.
             * Afterwards, the significand is normalized as a *binary*
             * value and the input value's normalized exponent can be
             * computed.  The significand bits are copied into a
             * double significand; if the string has more logical bits
             * than can fit in a double, the extra bits affect the
             * round and sticky bits which are used to round the final
             * value.
             */

            //  Extract significand sign
            String group1 = m.group(1);
            double sign = (( group1 == null ) || group1.equals("+"))? 1.0 : -1.0;


            //  Extract Significand magnitude
            /*
             * Based on the form of the significand, calculate how the
             * binary exponent needs to be adjusted to create a
             * normalized *hexadecimal* floating-point number; that
             * is, a number where there is one nonzero hex digit to
             * the left of the (hexa)decimal point.  Since we are
             * adjusting a binary, not hexadecimal exponent, the
             * exponent is adjusted by a multiple of 4.
             *
             * There are a number of significand scenarios to consider;
             * letters are used in indicate nonzero digits:
             *
             * 1. 000xxxx       =>      x.xxx   normalized
             *    increase exponent by (number of x's - 1)*4
             *
             * 2. 000xxx.yyyy =>        x.xxyyyy        normalized
             *    increase exponent by (number of x's - 1)*4
             *
             * 3. .000yyy  =>   y.yy    normalized
             *    decrease exponent by (number of zeros + 1)*4
             *
             * 4. 000.00000yyy => y.yy normalized
             *    decrease exponent by (number of zeros to right of point + 1)*4
             *
             * If the significand is exactly zero, return a properly
             * signed zero.
             */

            String significandString =null;
            int signifLength = 0;
            int exponentAdjust = 0;
            {
                int leftDigits  = 0; // number of meaningful digits to
                                     // left of "decimal" point
                                     // (leading zeros stripped)
                int rightDigits = 0; // number of digits to right of
                                     // "decimal" point; leading zeros
                                     // must always be accounted for
                /*
                 * The significand is made up of either
                 *
                 * 1. group 4 entirely (integer portion only)
                 *
                 * OR
                 *
                 * 2. the fractional portion from group 7 plus any
                 * (optional) integer portions from group 6.
                 */
                String group4;
                if( (group4 = m.group(4)) != null) {  // Integer-only significand
                    // Leading zeros never matter on the integer portion
                    significandString = stripLeadingZeros(group4);
                    leftDigits = significandString.length();
                }
                else {
                    // Group 6 is the optional integer; leading zeros
                    // never matter on the integer portion
                    String group6 = stripLeadingZeros(m.group(6));
                    leftDigits = group6.length();

                    // fraction
                    String group7 = m.group(7);
                    rightDigits = group7.length();

                    // Turn "integer.fraction" into "integer"+"fraction"
                    significandString =
                        ((group6 == null)?"":group6) + // is the null
                        // check necessary?
                        group7;
                }

                significandString = stripLeadingZeros(significandString);
                signifLength  = significandString.length();

                /*
                 * Adjust exponent as described above
                 */
                if (leftDigits >= 1) {  // Cases 1 and 2
                    exponentAdjust = 4*(leftDigits - 1);
                } else {                // Cases 3 and 4
                    exponentAdjust = -4*( rightDigits - signifLength + 1);
                }

                // If the significand is zero, the exponent doesn't
                // matter; return a properly signed zero.

                if (signifLength == 0) { // Only zeros in input
                    return new OldFloatingDecimalForTest(sign * 0.0);
                }
            }

            //  Extract Exponent
            /*
             * Use an int to read in the exponent value; this should
             * provide more than sufficient range for non-contrived
             * inputs.  If reading the exponent in as an int does
             * overflow, examine the sign of the exponent and
             * significand to determine what to do.
             */
            String group8 = m.group(8);
            boolean positiveExponent = ( group8 == null ) || group8.equals("+");
            long unsignedRawExponent;
            try {
                unsignedRawExponent = Integer.parseInt(m.group(9));
            }
            catch (NumberFormatException e) {
                // At this point, we know the exponent is
                // syntactically well-formed as a sequence of
                // digits.  Therefore, if an NumberFormatException
                // is thrown, it must be due to overflowing int's
                // range.  Also, at this point, we have already
                // checked for a zero significand.  Thus the signs
                // of the exponent and significand determine the
                // final result:
                //
                //                      significand
                //                      +               -
                // exponent     +       +infinity       -infinity
                //              -       +0.0            -0.0
                return new OldFloatingDecimalForTest(sign * (positiveExponent ?
                                                   Double.POSITIVE_INFINITY : 0.0));
            }

            long rawExponent =
                (positiveExponent ? 1L : -1L) * // exponent sign
                unsignedRawExponent;            // exponent magnitude

            // Calculate partially adjusted exponent
            long exponent = rawExponent + exponentAdjust ;

            // Starting copying non-zero bits into proper position in
            // a long; copy explicit bit too; this will be masked
            // later for normal values.

            boolean round = false;
            boolean sticky = false;
            int bitsCopied=0;
            int nextShift=0;
            long significand=0L;
            // First iteration is different, since we only copy
            // from the leading significand bit; one more exponent
            // adjust will be needed...

            // IMPORTANT: make leadingDigit a long to avoid
            // surprising shift semantics!
            long leadingDigit = getHexDigit(significandString, 0);

            /*
             * Left shift the leading digit (53 - (bit position of
             * leading 1 in digit)); this sets the top bit of the
             * significand to 1.  The nextShift value is adjusted
             * to take into account the number of bit positions of
             * the leadingDigit actually used.  Finally, the
             * exponent is adjusted to normalize the significand
             * as a binary value, not just a hex value.
             */
            if (leadingDigit == 1) {
                significand |= leadingDigit << 52;
                nextShift = 52 - 4;
                /* exponent += 0 */     }
            else if (leadingDigit <= 3) { // [2, 3]
                significand |= leadingDigit << 51;
                nextShift = 52 - 5;
                exponent += 1;
            }
            else if (leadingDigit <= 7) { // [4, 7]
                significand |= leadingDigit << 50;
                nextShift = 52 - 6;
                exponent += 2;
            }
            else if (leadingDigit <= 15) { // [8, f]
                significand |= leadingDigit << 49;
                nextShift = 52 - 7;
                exponent += 3;
            } else {
                throw new AssertionError("Result from digit conversion too large!");
            }
            // The preceding if-else could be replaced by a single
            // code block based on the high-order bit set in
            // leadingDigit.  Given leadingOnePosition,

            // significand |= leadingDigit << (SIGNIFICAND_WIDTH - leadingOnePosition);
            // nextShift = 52 - (3 + leadingOnePosition);
            // exponent += (leadingOnePosition-1);


            /*
             * Now the exponent variable is equal to the normalized
             * binary exponent.  Code below will make representation
             * adjustments if the exponent is incremented after
             * rounding (includes overflows to infinity) or if the
             * result is subnormal.
             */

            // Copy digit into significand until the significand can't
            // hold another full hex digit or there are no more input
            // hex digits.
            int i = 0;
            for(i = 1;
                i < signifLength && nextShift >= 0;
                i++) {
                long currentDigit = getHexDigit(significandString, i);
                significand |= (currentDigit << nextShift);
                nextShift-=4;
            }

            // After the above loop, the bulk of the string is copied.
            // Now, we must copy any partial hex digits into the
            // significand AND compute the round bit and start computing
            // sticky bit.

            if ( i < signifLength ) { // at least one hex input digit exists
                long currentDigit = getHexDigit(significandString, i);

                // from nextShift, figure out how many bits need
                // to be copied, if any
                switch(nextShift) { // must be negative
                case -1:
                    // three bits need to be copied in; can
                    // set round bit
                    significand |= ((currentDigit & 0xEL) >> 1);
                    round = (currentDigit & 0x1L)  != 0L;
                    break;

                case -2:
                    // two bits need to be copied in; can
                    // set round and start sticky
                    significand |= ((currentDigit & 0xCL) >> 2);
                    round = (currentDigit &0x2L)  != 0L;
                    sticky = (currentDigit & 0x1L) != 0;
                    break;

                case -3:
                    // one bit needs to be copied in
                    significand |= ((currentDigit & 0x8L)>>3);
                    // Now set round and start sticky, if possible
                    round = (currentDigit &0x4L)  != 0L;
                    sticky = (currentDigit & 0x3L) != 0;
                    break;

                case -4:
                    // all bits copied into significand; set
                    // round and start sticky
                    round = ((currentDigit & 0x8L) != 0);  // is top bit set?
                    // nonzeros in three low order bits?
                    sticky = (currentDigit & 0x7L) != 0;
                    break;

                default:
                    throw new AssertionError("Unexpected shift distance remainder.");
                    // break;
                }

                // Round is set; sticky might be set.

                // For the sticky bit, it suffices to check the
                // current digit and test for any nonzero digits in
                // the remaining unprocessed input.
                i++;
                while(i < signifLength && !sticky) {
                    currentDigit =  getHexDigit(significandString,i);
                    sticky = sticky || (currentDigit != 0);
                    i++;
                }

            }
            // else all of string was seen, round and sticky are
            // correct as false.


            // Check for overflow and update exponent accordingly.

            if (exponent > DoubleConsts.MAX_EXPONENT) {         // Infinite result
                // overflow to properly signed infinity
                return new OldFloatingDecimalForTest(sign * Double.POSITIVE_INFINITY);
            } else {  // Finite return value
                if (exponent <= DoubleConsts.MAX_EXPONENT && // (Usually) normal result
                    exponent >= DoubleConsts.MIN_EXPONENT) {

                    // The result returned in this block cannot be a
                    // zero or subnormal; however after the
                    // significand is adjusted from rounding, we could
                    // still overflow in infinity.

                    // AND exponent bits into significand; if the
                    // significand is incremented and overflows from
                    // rounding, this combination will update the
                    // exponent correctly, even in the case of
                    // Double.MAX_VALUE overflowing to infinity.

                    significand = (( (exponent +
                                     (long)DoubleConsts.EXP_BIAS) <<
                                     (DoubleConsts.SIGNIFICAND_WIDTH-1))
                                   & DoubleConsts.EXP_BIT_MASK) |
                        (DoubleConsts.SIGNIF_BIT_MASK & significand);

                }  else  {  // Subnormal or zero
                    // (exponent < DoubleConsts.MIN_EXPONENT)

                    if (exponent < (DoubleConsts.MIN_SUB_EXPONENT -1 )) {
                        // No way to round back to nonzero value
                        // regardless of significand if the exponent is
                        // less than -1075.
                        return new OldFloatingDecimalForTest(sign * 0.0);
                    } else { //  -1075 <= exponent <= MIN_EXPONENT -1 = -1023
                        /*
                         * Find bit position to round to; recompute
                         * round and sticky bits, and shift
                         * significand right appropriately.
                         */

                        sticky = sticky || round;
                        round = false;

                        // Number of bits of significand to preserve is
                        // exponent - abs_min_exp +1
                        // check:
                        // -1075 +1074 + 1 = 0
                        // -1023 +1074 + 1 = 52

                        int bitsDiscarded = 53 -
                            ((int)exponent - DoubleConsts.MIN_SUB_EXPONENT + 1);
                        assert bitsDiscarded >= 1 && bitsDiscarded <= 53;

                        // What to do here:
                        // First, isolate the new round bit
                        round = (significand & (1L << (bitsDiscarded -1))) != 0L;
                        if (bitsDiscarded > 1) {
                            // create mask to update sticky bits; low
                            // order bitsDiscarded bits should be 1
                            long mask = ~((~0L) << (bitsDiscarded -1));
                            sticky = sticky || ((significand & mask) != 0L ) ;
                        }

                        // Now, discard the bits
                        significand = significand >> bitsDiscarded;

                        significand = (( ((long)(DoubleConsts.MIN_EXPONENT -1) + // subnorm exp.
                                          (long)DoubleConsts.EXP_BIAS) <<
                                         (DoubleConsts.SIGNIFICAND_WIDTH-1))
                                       & DoubleConsts.EXP_BIT_MASK) |
                            (DoubleConsts.SIGNIF_BIT_MASK & significand);
                    }
                }

                // The significand variable now contains the currently
                // appropriate exponent bits too.

                /*
                 * Determine if significand should be incremented;
                 * making this determination depends on the least
                 * significant bit and the round and sticky bits.
                 *
                 * Round to nearest even rounding table, adapted from
                 * table 4.7 in "Computer Arithmetic" by IsraelKoren.
                 * The digit to the left of the "decimal" point is the
                 * least significant bit, the digits to the right of
                 * the point are the round and sticky bits
                 *
                 * Number       Round(x)
                 * x0.00        x0.
                 * x0.01        x0.
                 * x0.10        x0.
                 * x0.11        x1. = x0. +1
                 * x1.00        x1.
                 * x1.01        x1.
                 * x1.10        x1. + 1
                 * x1.11        x1. + 1
                 */
                boolean incremented = false;
                boolean leastZero  = ((significand & 1L) == 0L);
                if( (  leastZero  && round && sticky ) ||
                    ((!leastZero) && round )) {
                    incremented = true;
                    significand++;
                }

                OldFloatingDecimalForTest fd = new OldFloatingDecimalForTest(Math.copySign(
                                                              Double.longBitsToDouble(significand),
                                                              sign));

                /*
                 * Set roundingDir variable field of fd properly so
                 * that the input string can be properly rounded to a
                 * float value.  There are two cases to consider:
                 *
                 * 1. rounding to double discards sticky bit
                 * information that would change the result of a float
                 * rounding (near halfway case between two floats)
                 *
                 * 2. rounding to double rounds up when rounding up
                 * would not occur when rounding to float.
                 *
                 * For former case only needs to be considered when
                 * the bits rounded away when casting to float are all
                 * zero; otherwise, float round bit is properly set
                 * and sticky will already be true.
                 *
                 * The lower exponent bound for the code below is the
                 * minimum (normalized) subnormal exponent - 1 since a
                 * value with that exponent can round up to the
                 * minimum subnormal value and the sticky bit
                 * information must be preserved (i.e. case 1).
                 */
                if ((exponent >= FloatConsts.MIN_SUB_EXPONENT-1) &&
                    (exponent <= FloatConsts.MAX_EXPONENT ) ){
                    // Outside above exponent range, the float value
                    // will be zero or infinity.

                    /*
                     * If the low-order 28 bits of a rounded double
                     * significand are 0, the double could be a
                     * half-way case for a rounding to float.  If the
                     * double value is a half-way case, the double
                     * significand may have to be modified to round
                     * the the right float value (see the stickyRound
                     * method).  If the rounding to double has lost
                     * what would be float sticky bit information, the
                     * double significand must be incremented.  If the
                     * double value's significand was itself
                     * incremented, the float value may end up too
                     * large so the increment should be undone.
                     */
                    if ((significand & 0xfffffffL) ==  0x0L) {
                        // For negative values, the sign of the
                        // roundDir is the same as for positive values
                        // since adding 1 increasing the significand's
                        // magnitude and subtracting 1 decreases the
                        // significand's magnitude.  If neither round
                        // nor sticky is true, the double value is
                        // exact and no adjustment is required for a
                        // proper float rounding.
                        if( round || sticky) {
                            if (leastZero) { // prerounding lsb is 0
                                // If round and sticky were both true,
                                // and the least significant
                                // significand bit were 0, the rounded
                                // significand would not have its
                                // low-order bits be zero.  Therefore,
                                // we only need to adjust the
                                // significand if round XOR sticky is
                                // true.
                                if (round ^ sticky) {
                                    fd.roundDir =  1;
                                }
                            }
                            else { // prerounding lsb is 1
                                // If the prerounding lsb is 1 and the
                                // resulting significand has its
                                // low-order bits zero, the significand
                                // was incremented.  Here, we undo the
                                // increment, which will ensure the
                                // right guard and sticky bits for the
                                // float rounding.
                                if (round)
                                    fd.roundDir =  -1;
                            }
                        }
                    }
                }

                fd.fromHex = true;
                return fd;
            }
        }
    }

    /**
     * Return <code>s with any leading zeros removed.
     */
    static String stripLeadingZeros(String s) {
        return  s.replaceFirst("^0+", "");
    }

    /**
     * Extract a hexadecimal digit from position <code>position
     * of string <code>s.
     */
    static int getHexDigit(String s, int position) {
        int value = Character.digit(s.charAt(position), 16);
        if (value <= -1 || value >= 16) {
            throw new AssertionError("Unexpected failure of digit conversion of " +
                                     s.charAt(position));
        }
        return value;
    }


}

Other Java examples (source code examples)

Here is a short list of links related to this Java OldFloatingDecimalForTest.java source code file:

... this post is sponsored by my books ...

#1 New Release!

FP Best Seller

 

new blog posts

 

Copyright 1998-2024 Alvin Alexander, alvinalexander.com
All Rights Reserved.

A percentage of advertising revenue from
pages under the /java/jwarehouse URI on this website is
paid back to open source projects.