alvinalexander.com | career | drupal | java | mac | mysql | perl | scala | uml | unix  

Scala example source code file (ICodeReader.scala)

This example Scala source code file (ICodeReader.scala) is included in my "Source Code Warehouse" project. The intent of this project is to help you more easily find Scala source code examples by using tags.

All credit for the original source code belongs to scala-lang.org; I'm just trying to make examples easier to find. (For my Scala work, see my Scala examples and tutorials.)

Scala tags/keywords

collection, constant, double, float, int, list, load_local, long, nosymbol, objectreference, reflection, store_local

The ICodeReader.scala Scala example source code

/* NSC -- new Scala compiler
 * Copyright 2005-2013 LAMP/EPFL
 * @author Iulian Dragos
 */

package scala
package tools.nsc
package symtab
package classfile

import scala.collection.{ mutable, immutable }
import mutable.ListBuffer
import ClassfileConstants._
import scala.reflect.internal.JavaAccFlags

/** ICode reader from Java bytecode.
 *
 *  @author Iulian Dragos
 *  @version 1.0
 */
abstract class ICodeReader extends ClassfileParser {
  val global: Global
  val symbolTable: global.type
  val loaders: global.loaders.type
  import global._
  import icodes._

  var instanceCode: IClass = null          // the ICode class for the current symbol
  var staticCode:   IClass = null          // the ICode class static members
  var method: IMethod = NoIMethod          // the current IMethod
  var isScalaModule = false

  override protected type ThisConstantPool = ICodeConstantPool
  override protected def newConstantPool = new ICodeConstantPool

  /** Try to force the chain of enclosing classes for the given name. Otherwise
   *  flatten would not lift classes that were not referenced in the source code.
   */
  def forceMangledName(name: Name, module: Boolean): Symbol = {
    val parts = name.decode.toString.split(Array('.', '$'))
    var sym: Symbol = rootMirror.RootClass

    // was "at flatten.prev"
    enteringFlatten {
      for (part0 <- parts; if !(part0 == ""); part = newTermName(part0)) {
        val sym1 = enteringIcode {
          sym.linkedClassOfClass.info
          sym.info.decl(part.encode)
        }//.suchThat(module == _.isModule)

        sym = sym1 orElse sym.info.decl(part.encode.toTypeName)
      }
    }
    sym
  }

  protected class ICodeConstantPool extends ConstantPool {
    /** Return the symbol of the class member at `index`.
     *  The following special cases exist:
     *   - If the member refers to special `MODULE$` static field, return
     *  the symbol of the corresponding module.
     *   - If the member is a field, and is not found with the given name,
     *     another try is made by appending `nme.LOCAL_SUFFIX_STRING`
     *   - If no symbol is found in the right tpe, a new try is made in the
     *     companion class, in case the owner is an implementation class.
     */
    def getMemberSymbol(index: Int, static: Boolean): Symbol = {
      if (index <= 0 || len <= index) errorBadIndex(index)
      var f = values(index).asInstanceOf[Symbol]
      if (f eq null) {
        val start = starts(index)
        val first = in.buf(start).toInt
        if (first != CONSTANT_FIELDREF &&
            first != CONSTANT_METHODREF &&
            first != CONSTANT_INTFMETHODREF) errorBadTag(start)
        val ownerTpe = getClassOrArrayType(in.getChar(start + 1).toInt)
        debuglog("getMemberSymbol(static: " + static + "): owner type: " + ownerTpe + " " + ownerTpe.typeSymbol.originalName)
        val (name0, tpe0) = getNameAndType(in.getChar(start + 3).toInt, ownerTpe)
        debuglog("getMemberSymbol: name and tpe: " + name0 + ": " + tpe0)

        forceMangledName(tpe0.typeSymbol.name, module = false)
        val (name, tpe) = getNameAndType(in.getChar(start + 3).toInt, ownerTpe)
        if (name == nme.MODULE_INSTANCE_FIELD) {
          val index = in.getChar(start + 1).toInt
          val name = getExternalName(in.getChar(starts(index).toInt + 1).toInt)
          //assert(name.endsWith("$"), "Not a module class: " + name)
          f = forceMangledName(name dropRight 1, module = true)
          if (f == NoSymbol)
            f = rootMirror.getModuleByName(name dropRight 1)
        } else {
          val origName = nme.unexpandedName(name)
          val owner = if (static) ownerTpe.typeSymbol.linkedClassOfClass else ownerTpe.typeSymbol
          f = owner.info.findMember(origName, 0, 0, stableOnly = false).suchThat(_.tpe.widen =:= tpe)
          if (f == NoSymbol)
            f = owner.info.findMember(newTermName(origName + nme.LOCAL_SUFFIX_STRING), 0, 0, stableOnly = false).suchThat(_.tpe =:= tpe)
          if (f == NoSymbol) {
            // if it's an impl class, try to find it's static member inside the class
            if (ownerTpe.typeSymbol.isImplClass) {
              f = ownerTpe.findMember(origName, 0, 0, stableOnly = false).suchThat(_.tpe =:= tpe)
            } else {
              log("Couldn't find " + name + ": " + tpe + " inside: \n" + ownerTpe)
              f = tpe match {
                case MethodType(_, _) => owner.newMethod(name.toTermName, owner.pos)
                case _                => owner.newVariable(name.toTermName, owner.pos)
              }
              f setInfo tpe
              log("created fake member " + f.fullName)
            }
          }
        }
        assert(f != NoSymbol,
          s"could not find $name: $tpe in $ownerTpe" + (
            if (settings.debug.value) ownerTpe.members.mkString(", members are:\n  ", "\n  ", "") else ""
          )
        )
        values(index) = f
      }
      f
    }
  }

  /** Read back bytecode for the given class symbol. It returns
   *  two IClass objects, one for static members and one
   *  for non-static members.
   */
  def readClass(cls: Symbol): (IClass, IClass) = {
    cls.info // ensure accurate type information

    isScalaModule = cls.isModule && !cls.isJavaDefined
    log("ICodeReader reading " + cls)
    val name = cls.javaClassName

    classPath.findSourceFile(name) match {
      case Some(classFile) => parse(classFile, cls)
      case _               => MissingRequirementError.notFound("Could not find bytecode for " + cls)
    }

    (staticCode, instanceCode)
  }

  override def parseClass() {
    this.instanceCode = new IClass(clazz)
    this.staticCode   = new IClass(staticModule)

    u2
    pool getClassSymbol u2
    parseInnerClasses()

    in.skip(2)               // super class
    in.skip(2 * u2) // interfaces
    val fieldCount = u2
    for (i <- 0 until fieldCount) parseField()
    val methodCount = u2
    for (i <- 0 until methodCount) parseMethod()
    instanceCode.methods = instanceCode.methods.reverse
    staticCode.methods = staticCode.methods.reverse
  }

  override def parseField() {
    val (jflags, sym) = parseMember(field = true)
    getCode(jflags) addField new IField(sym)
    skipAttributes()
  }

  private def parseMember(field: Boolean): (JavaAccFlags, Symbol) = {
    val jflags   = JavaAccFlags(u2)
    val name     = pool getName u2
    /*  If we're parsing a scala module, the owner of members is always
     *  the module symbol.
     */
    val owner = (
      if (isScalaModule) staticModule
      else if (jflags.isStatic) moduleClass
      else clazz
    )
    val dummySym = owner.newMethod(name.toTermName, owner.pos, jflags.toScalaFlags)

    try {
      val ch  = u2
      val tpe = pool.getType(dummySym, ch)

      if ("<clinit>" == name.toString)
        (jflags, NoSymbol)
      else {
        var sym = owner.info.findMember(name, 0, 0, stableOnly = false).suchThat(old => sameType(old.tpe, tpe))
        if (sym == NoSymbol)
          sym = owner.info.findMember(newTermName(name + nme.LOCAL_SUFFIX_STRING), 0, 0, stableOnly = false).suchThat(_.tpe =:= tpe)
        if (sym == NoSymbol) {
          sym = if (field) owner.newValue(name.toTermName, owner.pos, jflags.toScalaFlags) else dummySym
          sym setInfoAndEnter tpe
          log(s"ICodeReader could not locate ${name.decode} in $owner.  Created ${sym.defString}.")
        }
        (jflags, sym)
      }
    } catch {
      case e: MissingRequirementError =>
        (jflags, NoSymbol)
    }
  }

  /** Checks if `tp1` is the same type as `tp2`, modulo implicit methods.
   *  We don't care about the distinction between implicit and explicit
   *  methods as this point, and we can't get back the information from
   *  bytecode anyway.
   */
  private def sameType(tp1: Type, tp2: Type): Boolean = (tp1, tp2) match {
    case (mt1 @ MethodType(args1, resTpe1), mt2 @ MethodType(args2, resTpe2)) if mt1.isImplicit || mt2.isImplicit =>
      MethodType(args1, resTpe1) =:= MethodType(args2, resTpe2)
    case _ =>
      tp1 =:= tp2
  }

  override def parseMethod() {
    val (jflags, sym) = parseMember(field = false)
    val beginning = in.bp
    try {
      if (sym != NoSymbol) {
        this.method = new IMethod(sym)
        this.method.returnType = toTypeKind(sym.tpe.resultType)
        getCode(jflags).addMethod(this.method)
        if (jflags.isNative)
          this.method.native = true
        val attributeCount = u2
        for (i <- 0 until attributeCount) parseAttribute()
      } else {
        debuglog("Skipping non-existent method.")
        skipAttributes()
      }
    } catch {
      case e: MissingRequirementError =>
        in.bp = beginning; skipAttributes()
        debuglog("Skipping non-existent method. " + e.msg)
    }
  }

  def parseAttribute() {
    val attrName = pool.getName(u2).toTypeName
    val attrLen = u4
    attrName match {
      case tpnme.CodeATTR =>
        parseByteCode()
      case _ =>
        in.skip(attrLen)
    }
  }

  override def classNameToSymbol(name: Name) = {
    val sym = if (name == fulltpnme.RuntimeNothing)
      definitions.NothingClass
    else if (name == fulltpnme.RuntimeNull)
      definitions.NullClass
    else if (nme.isImplClassName(name)) {
      val iface = rootMirror.getClassByName(tpnme.interfaceName(name))
      log("forcing " + iface.owner + " at phase: " + phase + " impl: " + iface.implClass)
      iface.owner.info // force the mixin type-transformer
      rootMirror.getClassByName(name)
    }
    else if (nme.isModuleName(name)) {
      val strippedName = name.dropModule
      forceMangledName(newTermName(strippedName.decode), module = true) orElse rootMirror.getModuleByName(strippedName)
    }
    else {
      forceMangledName(name, module = false)
      exitingFlatten(rootMirror.getClassByName(name.toTypeName))
    }
    if (sym.isModule)
      sym.moduleClass
    else
      sym
  }


  var maxStack: Int = _
  var maxLocals: Int = _
  val JVM = ClassfileConstants // shorter, uppercase alias for use in case patterns

  def toUnsignedByte(b: Byte): Int = b.toInt & 0xff
  var pc = 0

  /** Parse java bytecode into ICode */
  def parseByteCode() {
    maxStack = u2
    maxLocals = u2
    val codeLength = u4
    val code = new LinearCode

    def parseInstruction() {
      import opcodes._
      import code._
      var size = 1 // instruction size

      /* Parse 16 bit jump target. */
      def parseJumpTarget = {
        size += 2
        val offset = u2.toShort
        val target = pc + offset
        assert(target >= 0 && target < codeLength, "Illegal jump target: " + target)
        target
      }

      /* Parse 32 bit jump target. */
      def parseJumpTargetW: Int = {
        size += 4
        val offset = u4
        val target = pc + offset
        assert(target >= 0 && target < codeLength, "Illegal jump target: " + target + "pc: " + pc + " offset: " + offset)
        target
      }

      u1 match {
        case JVM.nop => parseInstruction()
        case JVM.aconst_null => code emit CONSTANT(Constant(null))
        case JVM.iconst_m1   => code emit CONSTANT(Constant(-1))
        case JVM.iconst_0    => code emit CONSTANT(Constant(0))
        case JVM.iconst_1    => code emit CONSTANT(Constant(1))
        case JVM.iconst_2    => code emit CONSTANT(Constant(2))
        case JVM.iconst_3    => code emit CONSTANT(Constant(3))
        case JVM.iconst_4    => code emit CONSTANT(Constant(4))
        case JVM.iconst_5    => code emit CONSTANT(Constant(5))

        case JVM.lconst_0    => code emit CONSTANT(Constant(0l))
        case JVM.lconst_1    => code emit CONSTANT(Constant(1l))
        case JVM.fconst_0    => code emit CONSTANT(Constant(0.0f))
        case JVM.fconst_1    => code emit CONSTANT(Constant(1.0f))
        case JVM.fconst_2    => code emit CONSTANT(Constant(2.0f))
        case JVM.dconst_0    => code emit CONSTANT(Constant(0.0))
        case JVM.dconst_1    => code emit CONSTANT(Constant(1.0))

        case JVM.bipush      => code.emit(CONSTANT(Constant(u1))); size += 1
        case JVM.sipush      => code.emit(CONSTANT(Constant(u2))); size += 2
        case JVM.ldc         => code.emit(CONSTANT(pool.getConstant(u1))); size += 1
        case JVM.ldc_w       => code.emit(CONSTANT(pool.getConstant(u2))); size += 2
        case JVM.ldc2_w      => code.emit(CONSTANT(pool.getConstant(u2))); size += 2
        case JVM.iload       => code.emit(LOAD_LOCAL(code.getLocal(u1, INT)));    size += 1
        case JVM.lload       => code.emit(LOAD_LOCAL(code.getLocal(u1, LONG)));   size += 1
        case JVM.fload       => code.emit(LOAD_LOCAL(code.getLocal(u1, FLOAT)));  size += 1
        case JVM.dload       => code.emit(LOAD_LOCAL(code.getLocal(u1, DOUBLE))); size += 1
        case JVM.aload       =>
          val local = u1.toInt; size += 1
          if (local == 0 && !method.isStatic)
            code.emit(THIS(method.symbol.owner))
          else
            code.emit(LOAD_LOCAL(code.getLocal(local, ObjectReference)))

        case JVM.iload_0     => code.emit(LOAD_LOCAL(code.getLocal(0, INT)))
        case JVM.iload_1     => code.emit(LOAD_LOCAL(code.getLocal(1, INT)))
        case JVM.iload_2     => code.emit(LOAD_LOCAL(code.getLocal(2, INT)))
        case JVM.iload_3     => code.emit(LOAD_LOCAL(code.getLocal(3, INT)))
        case JVM.lload_0     => code.emit(LOAD_LOCAL(code.getLocal(0, LONG)))
        case JVM.lload_1     => code.emit(LOAD_LOCAL(code.getLocal(1, LONG)))
        case JVM.lload_2     => code.emit(LOAD_LOCAL(code.getLocal(2, LONG)))
        case JVM.lload_3     => code.emit(LOAD_LOCAL(code.getLocal(3, LONG)))
        case JVM.fload_0     => code.emit(LOAD_LOCAL(code.getLocal(0, FLOAT)))
        case JVM.fload_1     => code.emit(LOAD_LOCAL(code.getLocal(1, FLOAT)))
        case JVM.fload_2     => code.emit(LOAD_LOCAL(code.getLocal(2, FLOAT)))
        case JVM.fload_3     => code.emit(LOAD_LOCAL(code.getLocal(3, FLOAT)))
        case JVM.dload_0     => code.emit(LOAD_LOCAL(code.getLocal(0, DOUBLE)))
        case JVM.dload_1     => code.emit(LOAD_LOCAL(code.getLocal(1, DOUBLE)))
        case JVM.dload_2     => code.emit(LOAD_LOCAL(code.getLocal(2, DOUBLE)))
        case JVM.dload_3     => code.emit(LOAD_LOCAL(code.getLocal(3, DOUBLE)))
        case JVM.aload_0     =>
          if (!method.isStatic)
            code.emit(THIS(method.symbol.owner))
          else
            code.emit(LOAD_LOCAL(code.getLocal(0, ObjectReference)))
        case JVM.aload_1     => code.emit(LOAD_LOCAL(code.getLocal(1, ObjectReference)))
        case JVM.aload_2     => code.emit(LOAD_LOCAL(code.getLocal(2, ObjectReference)))
        case JVM.aload_3     => code.emit(LOAD_LOCAL(code.getLocal(3, ObjectReference)))

        case JVM.iaload      => code.emit(LOAD_ARRAY_ITEM(INT))
        case JVM.laload      => code.emit(LOAD_ARRAY_ITEM(LONG))
        case JVM.faload      => code.emit(LOAD_ARRAY_ITEM(FLOAT))
        case JVM.daload      => code.emit(LOAD_ARRAY_ITEM(DOUBLE))
        case JVM.aaload      => code.emit(LOAD_ARRAY_ITEM(ObjectReference))
        case JVM.baload      => code.emit(LOAD_ARRAY_ITEM(BYTE))
        case JVM.caload      => code.emit(LOAD_ARRAY_ITEM(CHAR))
        case JVM.saload      => code.emit(LOAD_ARRAY_ITEM(SHORT))

        case JVM.istore      => code.emit(STORE_LOCAL(code.getLocal(u1, INT)));    size += 1
        case JVM.lstore      => code.emit(STORE_LOCAL(code.getLocal(u1, LONG)));   size += 1
        case JVM.fstore      => code.emit(STORE_LOCAL(code.getLocal(u1, FLOAT)));  size += 1
        case JVM.dstore      => code.emit(STORE_LOCAL(code.getLocal(u1, DOUBLE))); size += 1
        case JVM.astore      => code.emit(STORE_LOCAL(code.getLocal(u1, ObjectReference))); size += 1
        case JVM.istore_0    => code.emit(STORE_LOCAL(code.getLocal(0, INT)))
        case JVM.istore_1    => code.emit(STORE_LOCAL(code.getLocal(1, INT)))
        case JVM.istore_2    => code.emit(STORE_LOCAL(code.getLocal(2, INT)))
        case JVM.istore_3    => code.emit(STORE_LOCAL(code.getLocal(3, INT)))
        case JVM.lstore_0    => code.emit(STORE_LOCAL(code.getLocal(0, LONG)))
        case JVM.lstore_1    => code.emit(STORE_LOCAL(code.getLocal(1, LONG)))
        case JVM.lstore_2    => code.emit(STORE_LOCAL(code.getLocal(2, LONG)))
        case JVM.lstore_3    => code.emit(STORE_LOCAL(code.getLocal(3, LONG)))
        case JVM.fstore_0    => code.emit(STORE_LOCAL(code.getLocal(0, FLOAT)))
        case JVM.fstore_1    => code.emit(STORE_LOCAL(code.getLocal(1, FLOAT)))
        case JVM.fstore_2    => code.emit(STORE_LOCAL(code.getLocal(2, FLOAT)))
        case JVM.fstore_3    => code.emit(STORE_LOCAL(code.getLocal(3, FLOAT)))
        case JVM.dstore_0    => code.emit(STORE_LOCAL(code.getLocal(0, DOUBLE)))
        case JVM.dstore_1    => code.emit(STORE_LOCAL(code.getLocal(1, DOUBLE)))
        case JVM.dstore_2    => code.emit(STORE_LOCAL(code.getLocal(2, DOUBLE)))
        case JVM.dstore_3    => code.emit(STORE_LOCAL(code.getLocal(3, DOUBLE)))
        case JVM.astore_0    =>
          if (method.isStatic)
            code.emit(STORE_LOCAL(code.getLocal(0, ObjectReference)))
          else
            code.emit(STORE_THIS(ObjectReference))
        case JVM.astore_1    => code.emit(STORE_LOCAL(code.getLocal(1, ObjectReference)))
        case JVM.astore_2    => code.emit(STORE_LOCAL(code.getLocal(2, ObjectReference)))
        case JVM.astore_3    => code.emit(STORE_LOCAL(code.getLocal(3, ObjectReference)))
        case JVM.iastore     => code.emit(STORE_ARRAY_ITEM(INT))
        case JVM.lastore     => code.emit(STORE_ARRAY_ITEM(LONG))
        case JVM.fastore     => code.emit(STORE_ARRAY_ITEM(FLOAT))
        case JVM.dastore     => code.emit(STORE_ARRAY_ITEM(DOUBLE))
        case JVM.aastore     => code.emit(STORE_ARRAY_ITEM(ObjectReference))
        case JVM.bastore     => code.emit(STORE_ARRAY_ITEM(BYTE))
        case JVM.castore     => code.emit(STORE_ARRAY_ITEM(CHAR))
        case JVM.sastore     => code.emit(STORE_ARRAY_ITEM(SHORT))

        case JVM.pop         => code.emit(DROP(INT))   // any 1-word type would do
        case JVM.pop2        => code.emit(DROP(LONG))  // any 2-word type would do
        case JVM.dup         => code.emit(DUP(ObjectReference)) // TODO: Is the kind inside DUP ever needed?
        case JVM.dup_x1      => code.emit(DUP_X1)      // sys.error("Unsupported JVM bytecode: dup_x1")
        case JVM.dup_x2      => code.emit(DUP_X2)      // sys.error("Unsupported JVM bytecode: dup_x2")
        case JVM.dup2        => code.emit(DUP(LONG))   // TODO: Is the kind inside DUP ever needed?
        case JVM.dup2_x1     => code.emit(DUP2_X1)     // sys.error("Unsupported JVM bytecode: dup2_x1")
        case JVM.dup2_x2     => code.emit(DUP2_X2)     // sys.error("Unsupported JVM bytecode: dup2_x2")
        case JVM.swap        => sys.error("Unsupported JVM bytecode: swap")

        case JVM.iadd        => code.emit(CALL_PRIMITIVE(Arithmetic(ADD, INT)))
        case JVM.ladd        => code.emit(CALL_PRIMITIVE(Arithmetic(ADD, LONG)))
        case JVM.fadd        => code.emit(CALL_PRIMITIVE(Arithmetic(ADD, FLOAT)))
        case JVM.dadd        => code.emit(CALL_PRIMITIVE(Arithmetic(ADD, DOUBLE)))
        case JVM.isub        => code.emit(CALL_PRIMITIVE(Arithmetic(SUB, INT)))
        case JVM.lsub        => code.emit(CALL_PRIMITIVE(Arithmetic(SUB, LONG)))
        case JVM.fsub        => code.emit(CALL_PRIMITIVE(Arithmetic(SUB, FLOAT)))
        case JVM.dsub        => code.emit(CALL_PRIMITIVE(Arithmetic(SUB, DOUBLE)))
        case JVM.imul        => code.emit(CALL_PRIMITIVE(Arithmetic(MUL, INT)))
        case JVM.lmul        => code.emit(CALL_PRIMITIVE(Arithmetic(MUL, LONG)))
        case JVM.fmul        => code.emit(CALL_PRIMITIVE(Arithmetic(MUL, FLOAT)))
        case JVM.dmul        => code.emit(CALL_PRIMITIVE(Arithmetic(MUL, DOUBLE)))
        case JVM.idiv        => code.emit(CALL_PRIMITIVE(Arithmetic(DIV, INT)))
        case JVM.ldiv        => code.emit(CALL_PRIMITIVE(Arithmetic(DIV, LONG)))
        case JVM.fdiv        => code.emit(CALL_PRIMITIVE(Arithmetic(DIV, FLOAT)))
        case JVM.ddiv        => code.emit(CALL_PRIMITIVE(Arithmetic(DIV, DOUBLE)))
        case JVM.irem        => code.emit(CALL_PRIMITIVE(Arithmetic(REM, INT)))
        case JVM.lrem        => code.emit(CALL_PRIMITIVE(Arithmetic(REM, LONG)))
        case JVM.frem        => code.emit(CALL_PRIMITIVE(Arithmetic(REM, FLOAT)))
        case JVM.drem        => code.emit(CALL_PRIMITIVE(Arithmetic(REM, DOUBLE)))

        case JVM.ineg        => code.emit(CALL_PRIMITIVE(Negation(INT)))
        case JVM.lneg        => code.emit(CALL_PRIMITIVE(Negation(LONG)))
        case JVM.fneg        => code.emit(CALL_PRIMITIVE(Negation(FLOAT)))
        case JVM.dneg        => code.emit(CALL_PRIMITIVE(Negation(DOUBLE)))

        case JVM.ishl        => code.emit(CALL_PRIMITIVE(Shift(LSL, INT)))
        case JVM.lshl        => code.emit(CALL_PRIMITIVE(Shift(LSL, LONG)))
        case JVM.ishr        => code.emit(CALL_PRIMITIVE(Shift(LSR, INT)))
        case JVM.lshr        => code.emit(CALL_PRIMITIVE(Shift(LSR, LONG)))
        case JVM.iushr       => code.emit(CALL_PRIMITIVE(Shift(ASR, INT)))
        case JVM.lushr       => code.emit(CALL_PRIMITIVE(Shift(ASR, LONG)))
        case JVM.iand        => code.emit(CALL_PRIMITIVE(Logical(AND, INT)))
        case JVM.land        => code.emit(CALL_PRIMITIVE(Logical(AND, LONG)))
        case JVM.ior         => code.emit(CALL_PRIMITIVE(Logical(OR, INT)))
        case JVM.lor         => code.emit(CALL_PRIMITIVE(Logical(OR, LONG)))
        case JVM.ixor        => code.emit(CALL_PRIMITIVE(Logical(XOR, INT)))
        case JVM.lxor        => code.emit(CALL_PRIMITIVE(Logical(XOR, LONG)))
        case JVM.iinc        =>
          size += 2
          val local = code.getLocal(u1, INT)
          code.emit(LOAD_LOCAL(local))
          code.emit(CONSTANT(Constant(u1)))
          code.emit(CALL_PRIMITIVE(Arithmetic(ADD, INT)))
          code.emit(STORE_LOCAL(local))

        case JVM.i2l         => code.emit(CALL_PRIMITIVE(Conversion(INT, LONG)))
        case JVM.i2f         => code.emit(CALL_PRIMITIVE(Conversion(INT, FLOAT)))
        case JVM.i2d         => code.emit(CALL_PRIMITIVE(Conversion(INT, DOUBLE)))
        case JVM.l2i         => code.emit(CALL_PRIMITIVE(Conversion(LONG, INT)))
        case JVM.l2f         => code.emit(CALL_PRIMITIVE(Conversion(LONG, FLOAT)))
        case JVM.l2d         => code.emit(CALL_PRIMITIVE(Conversion(LONG, DOUBLE)))
        case JVM.f2i         => code.emit(CALL_PRIMITIVE(Conversion(FLOAT, INT)))
        case JVM.f2l         => code.emit(CALL_PRIMITIVE(Conversion(FLOAT, LONG)))
        case JVM.f2d         => code.emit(CALL_PRIMITIVE(Conversion(FLOAT, DOUBLE)))
        case JVM.d2i         => code.emit(CALL_PRIMITIVE(Conversion(DOUBLE, INT)))
        case JVM.d2l         => code.emit(CALL_PRIMITIVE(Conversion(DOUBLE, LONG)))
        case JVM.d2f         => code.emit(CALL_PRIMITIVE(Conversion(DOUBLE, FLOAT)))
        case JVM.i2b         => code.emit(CALL_PRIMITIVE(Conversion(INT, BYTE)))
        case JVM.i2c         => code.emit(CALL_PRIMITIVE(Conversion(INT, CHAR)))
        case JVM.i2s         => code.emit(CALL_PRIMITIVE(Conversion(INT, SHORT)))

        case JVM.lcmp        => code.emit(CALL_PRIMITIVE(Comparison(CMP, LONG)))
        case JVM.fcmpl       => code.emit(CALL_PRIMITIVE(Comparison(CMPL, FLOAT)))
        case JVM.fcmpg       => code.emit(CALL_PRIMITIVE(Comparison(CMPG, FLOAT)))
        case JVM.dcmpl       => code.emit(CALL_PRIMITIVE(Comparison(CMPL, DOUBLE)))
        case JVM.dcmpg       => code.emit(CALL_PRIMITIVE(Comparison(CMPG, DOUBLE)))

        case JVM.ifeq        => code.emit(LCZJUMP(parseJumpTarget, pc + size, EQ, INT))
        case JVM.ifne        => code.emit(LCZJUMP(parseJumpTarget, pc + size, NE, INT))
        case JVM.iflt        => code.emit(LCZJUMP(parseJumpTarget, pc + size, LT, INT))
        case JVM.ifge        => code.emit(LCZJUMP(parseJumpTarget, pc + size, GE, INT))
        case JVM.ifgt        => code.emit(LCZJUMP(parseJumpTarget, pc + size, GT, INT))
        case JVM.ifle        => code.emit(LCZJUMP(parseJumpTarget, pc + size, LE, INT))

        case JVM.if_icmpeq   => code.emit(LCJUMP(parseJumpTarget, pc + size, EQ, INT))
        case JVM.if_icmpne   => code.emit(LCJUMP(parseJumpTarget, pc + size, NE, INT))
        case JVM.if_icmplt   => code.emit(LCJUMP(parseJumpTarget, pc + size, LT, INT))
        case JVM.if_icmpge   => code.emit(LCJUMP(parseJumpTarget, pc + size, GE, INT))
        case JVM.if_icmpgt   => code.emit(LCJUMP(parseJumpTarget, pc + size, GT, INT))
        case JVM.if_icmple   => code.emit(LCJUMP(parseJumpTarget, pc + size, LE, INT))
        case JVM.if_acmpeq   => code.emit(LCJUMP(parseJumpTarget, pc + size, EQ, ObjectReference))
        case JVM.if_acmpne   => code.emit(LCJUMP(parseJumpTarget, pc + size, NE, ObjectReference))

        case JVM.goto        => emit(LJUMP(parseJumpTarget))
        case JVM.jsr         => sys.error("Cannot handle jsr/ret")
        case JVM.ret         => sys.error("Cannot handle jsr/ret")
        case JVM.tableswitch =>
          val padding = if ((pc + size) % 4 != 0) 4 - ((pc + size) % 4) else 0
          size += padding
          in.bp += padding
          assert((pc + size % 4) != 0, pc)
/*          var byte1 = u1; size += 1;
          while (byte1 == 0) { byte1 = u1; size += 1; }
          val default = byte1 << 24 | u1 << 16 | u1 << 8 | u1;
          size = size + 3
       */
          val default = pc + u4; size += 4
          val low  = u4
          val high = u4
          size += 8
          assert(low <= high, "Value low not <= high for tableswitch.")

          val tags = List.tabulate(high - low + 1)(n => List(low + n))
          val targets = for (_ <- tags) yield parseJumpTargetW
          code.emit(LSWITCH(tags, targets ::: List(default)))

        case JVM.lookupswitch =>
          val padding = if ((pc + size) % 4 != 0) 4 - ((pc + size) % 4) else 0
          size += padding
          in.bp += padding
          assert((pc + size % 4) != 0, pc)
          val default = pc + u4; size += 4
          val npairs = u4; size += 4
          var tags: List[List[Int]] = Nil
          var targets: List[Int] = Nil
          var i = 0
          while (i < npairs) {
            tags = List(u4) :: tags; size += 4
            targets = parseJumpTargetW :: targets; // parseJumpTargetW updates 'size' itself
            i += 1
          }
          targets = default :: targets
          code.emit(LSWITCH(tags.reverse, targets.reverse))

        case JVM.ireturn     => code.emit(RETURN(INT))
        case JVM.lreturn     => code.emit(RETURN(LONG))
        case JVM.freturn     => code.emit(RETURN(FLOAT))
        case JVM.dreturn     => code.emit(RETURN(DOUBLE))
        case JVM.areturn     => code.emit(RETURN(ObjectReference))
        case JVM.return_     => code.emit(RETURN(UNIT))

        case JVM.getstatic    =>
          val field = pool.getMemberSymbol(u2, static = true); size += 2
          if (field.hasModuleFlag)
            code emit LOAD_MODULE(field)
          else
            code emit LOAD_FIELD(field, isStatic = true)
        case JVM.putstatic   =>
          val field = pool.getMemberSymbol(u2, static = true); size += 2
          code.emit(STORE_FIELD(field, isStatic = true))
        case JVM.getfield    =>
          val field = pool.getMemberSymbol(u2, static = false); size += 2
          code.emit(LOAD_FIELD(field, isStatic = false))
        case JVM.putfield    =>
          val field = pool.getMemberSymbol(u2, static = false); size += 2
          code.emit(STORE_FIELD(field, isStatic = false))

        case JVM.invokevirtual =>
          val m = pool.getMemberSymbol(u2, static = false); size += 2
          code.emit(CALL_METHOD(m, Dynamic))
          method.updateRecursive(m)
        case JVM.invokeinterface  =>
          val m = pool.getMemberSymbol(u2, static = false); size += 4
          in.skip(2)
          code.emit(CALL_METHOD(m, Dynamic))
          // invokeinterface can't be recursive
        case JVM.invokespecial   =>
          val m = pool.getMemberSymbol(u2, static = false); size += 2
          val style = if (m.name == nme.CONSTRUCTOR || m.isPrivate) Static(onInstance = true)
                      else SuperCall(m.owner.name)
          code.emit(CALL_METHOD(m, style))
          method.updateRecursive(m)
        case JVM.invokestatic    =>
          val m = pool.getMemberSymbol(u2, static = true); size += 2
          if (isBox(m))
            code.emit(BOX(toTypeKind(m.info.paramTypes.head)))
          else if (isUnbox(m))
            code.emit(UNBOX(toTypeKind(m.info.resultType)))
          else {
            code.emit(CALL_METHOD(m, Static(onInstance = false)))
            method.updateRecursive(m)
          }
        case JVM.invokedynamic  =>
          // TODO, this is just a place holder. A real implementation must parse the class constant entry
          debuglog("Found JVM invokedynamic instructionm, inserting place holder ICode INVOKE_DYNAMIC.")
          containsInvokeDynamic = true
          val poolEntry = in.nextChar.toInt
          in.skip(2)
          code.emit(INVOKE_DYNAMIC(poolEntry))

        case JVM.new_          =>
          code.emit(NEW(REFERENCE(pool.getClassSymbol(u2))))
          size += 2
        case JVM.newarray      =>
          val kind = u1 match {
            case T_BOOLEAN => BOOL
            case T_CHAR    => CHAR
            case T_FLOAT   => FLOAT
            case T_DOUBLE  => DOUBLE
            case T_BYTE    => BYTE
            case T_SHORT   => SHORT
            case T_INT     => INT
            case T_LONG    => LONG
          }
          size += 1
          code.emit(CREATE_ARRAY(kind, 1))

        case JVM.anewarray     =>
          val tpe = pool.getClassOrArrayType(u2); size += 2
          code.emit(CREATE_ARRAY(toTypeKind(tpe), 1))

        case JVM.arraylength   => code.emit(CALL_PRIMITIVE(ArrayLength(ObjectReference))); // the kind does not matter
        case JVM.athrow        => code.emit(THROW(definitions.ThrowableClass))
        case JVM.checkcast     =>
          code.emit(CHECK_CAST(toTypeKind(pool.getClassOrArrayType(u2)))); size += 2
        case JVM.instanceof    =>
          code.emit(IS_INSTANCE(toTypeKind(pool.getClassOrArrayType(u2)))); size += 2
        case JVM.monitorenter  => code.emit(MONITOR_ENTER())
        case JVM.monitorexit   => code.emit(MONITOR_EXIT())
        case JVM.wide          =>
          size += 1
          u1 match {
            case JVM.iload  => code.emit(LOAD_LOCAL(code.getLocal(u2, INT)));    size += 2
            case JVM.lload  => code.emit(LOAD_LOCAL(code.getLocal(u2, LONG)));   size += 2
            case JVM.fload  => code.emit(LOAD_LOCAL(code.getLocal(u2, FLOAT)));  size += 2
            case JVM.dload  => code.emit(LOAD_LOCAL(code.getLocal(u2, DOUBLE))); size += 2
            case JVM.aload  => code.emit(LOAD_LOCAL(code.getLocal(u2, ObjectReference))); size += 2
            case JVM.istore => code.emit(STORE_LOCAL(code.getLocal(u2, INT)));    size += 2
            case JVM.lstore => code.emit(STORE_LOCAL(code.getLocal(u2, LONG)));   size += 2
            case JVM.fstore => code.emit(STORE_LOCAL(code.getLocal(u2, FLOAT)));  size += 2
            case JVM.dstore => code.emit(STORE_LOCAL(code.getLocal(u2, DOUBLE))); size += 2
            case JVM.astore => code.emit(STORE_LOCAL(code.getLocal(u2, ObjectReference))); size += 2
            case JVM.ret => sys.error("Cannot handle jsr/ret")
            case JVM.iinc =>
              size += 4
              val local = code.getLocal(u2, INT)
              code.emit(CONSTANT(Constant(u2)))
              code.emit(CALL_PRIMITIVE(Arithmetic(ADD, INT)))
              code.emit(STORE_LOCAL(local))
            case _ => sys.error("Invalid 'wide' operand")
          }

        case JVM.multianewarray =>
          size += 3
          val tpe = toTypeKind(pool getClassOrArrayType u2)
          val dim = u1
//          assert(dim == 1, "Cannot handle multidimensional arrays yet.")
          code emit CREATE_ARRAY(tpe, dim)

        case JVM.ifnull    => code emit LCZJUMP(parseJumpTarget, pc + size, EQ, ObjectReference)
        case JVM.ifnonnull => code emit LCZJUMP(parseJumpTarget, pc + size, NE, ObjectReference)
        case JVM.goto_w    => code emit LJUMP(parseJumpTargetW)
        case JVM.jsr_w     => sys.error("Cannot handle jsr/ret")

//        case _ => sys.error("Unknown bytecode")
      }
      pc += size
    }

    // add parameters
    var idx = if (method.isStatic) 0 else 1
    for (t <- method.symbol.tpe.paramTypes) {
      val kind = toTypeKind(t)
      this.method addParam code.enterParam(idx, kind)
      val width = if (kind.isWideType) 2 else 1
      idx += width
    }

    pc = 0
    while (pc < codeLength) parseInstruction()

    val exceptionEntries = u2.toInt
    code.containsEHs = (exceptionEntries != 0)
    var i = 0
    while (i < exceptionEntries) {
      // skip start end PC
      in.skip(4)
      // read the handler PC
      code.jmpTargets += u2
      // skip the exception type
      in.skip(2)
      i += 1
    }
    skipAttributes()

    code.toBasicBlock
    assert(method.hasCode, method)
    // reverse parameters, as they were prepended during code generation
    method.params = method.params.reverse

    if (code.containsDUPX)
      code.resolveDups()

    if (code.containsNEW)
      code.resolveNEWs()
  }

  /** Note: these methods are different from the methods of the same name found
   *  in Definitions.  These test whether a symbol represents one of the boxTo/unboxTo
   *  methods found in BoxesRunTime.  The others test whether a symbol represents a
   *  synthetic method from one of the fake companion classes of the primitive types,
   *  such as Int.box(5).
   */
  def isBox(m: Symbol): Boolean =
    (m.owner == definitions.BoxesRunTimeClass
        && m.name.startsWith("boxTo"))

  def isUnbox(m: Symbol): Boolean =
    (m.owner == definitions.BoxesRunTimeClass
        && m.name.startsWith("unboxTo"))

  /** Return the icode class that should include members with the given flags.
   *  There are two possible classes, the static part and the instance part.
   */
  def getCode(flags: JavaAccFlags): IClass =
    if (isScalaModule || flags.isStatic) staticCode else instanceCode

  class LinearCode {
    val instrs: ListBuffer[(Int, Instruction)] = new ListBuffer
    val jmpTargets: mutable.Set[Int] = perRunCaches.newSet[Int]()
    val locals: mutable.Map[Int, List[(Local, TypeKind)]] = perRunCaches.newMap()

    var containsDUPX = false
    var containsNEW  = false
    var containsEHs  = false
    var containsInvokeDynamic = false

    def emit(i: Instruction) {
      instrs += ((pc, i))
      if (i.isInstanceOf[DupX])
        containsDUPX = true
      if (i.isInstanceOf[opcodes.NEW])
        containsNEW = true
    }

    /** Break this linear code in basic block representation
     *  As a side effect, it sets the `code` field of the current
     */
    def toBasicBlock: Code = {
      import opcodes._

      val code = new Code(method)
      method.setCode(code)
      method.bytecodeHasEHs = containsEHs
      method.bytecodeHasInvokeDynamic = containsInvokeDynamic
      var bb = code.startBlock

      def makeBasicBlocks: mutable.Map[Int, BasicBlock] =
        mutable.Map(jmpTargets.toSeq map (_ -> code.newBlock): _*)

      val blocks = makeBasicBlocks
      var otherBlock: BasicBlock = NoBasicBlock

      for ((pc, instr) <- instrs.iterator) {
//        Console.println("> " + pc + ": " + instr);
        if (jmpTargets(pc)) {
          otherBlock = blocks(pc)
          if (!bb.closed && otherBlock != bb) {
            bb.emit(JUMP(otherBlock))
            bb.close()
//            Console.println("\t> closing bb: " + bb)
          }
          bb = otherBlock
//          Console.println("\t> entering bb: " + bb)
        }
        instr match {
          case LJUMP(target) =>
            otherBlock = blocks(target)
            bb.emitOnly(JUMP(otherBlock))

          case LCJUMP(success, failure, cond, kind) =>
            otherBlock = blocks(success)
            val failBlock = blocks(failure)
            bb.emitOnly(CJUMP(otherBlock, failBlock, cond, kind))

          case LCZJUMP(success, failure, cond, kind) =>
            otherBlock = blocks(success)
            val failBlock = blocks(failure)
            bb.emitOnly(CZJUMP(otherBlock, failBlock, cond, kind))

          case LSWITCH(tags, targets) =>
            bb.emitOnly(SWITCH(tags, targets map blocks))

          case RETURN(_) =>
            bb emitOnly instr

          case THROW(clasz) =>
            bb emitOnly instr

          case _ =>
            bb emit instr
        }
      }

      method.code
    }

    def resolveDups() {
      import opcodes._

      val tfa = new analysis.MethodTFA() {
        import analysis._

        /** Abstract interpretation for one instruction. */
        override def mutatingInterpret(out: typeFlowLattice.Elem, i: Instruction): typeFlowLattice.Elem = {
          val stack = out.stack
          import stack.push
          i match {
            case DUP_X1 =>
              val (one, two) = stack.pop2
              push(one); push(two); push(one)

            case DUP_X2 =>
              val (one, two, three) = stack.pop3
              push(one); push(three); push(two); push(one)

            case DUP2_X1 =>
              val (one, two) = stack.pop2
              if (one.isWideType) {
                push(one); push(two); push(one)
              } else {
                val three = stack.pop
                push(two); push(one); push(three); push(two); push(one)
              }

            case DUP2_X2 =>
              val (one, two) = stack.pop2
              if (one.isWideType && two.isWideType) {
                push(one); push(two); push(one)
              } else if (one.isWideType) {
                val three = stack.pop
                assert(!three.isWideType, "Impossible")
                push(one); push(three); push(two); push(one)
              } else {
                val three = stack.pop
                if (three.isWideType) {
                  push(two); push(one); push(one); push(three); push(two); push(one)
                } else {
                  val four = stack.pop
                  push(two); push(one); push(four); push(one); push(three); push(two); push(one)
                }
              }

            case _ =>
              super.mutatingInterpret(out, i)
          }
          out
        }
      }

//      method.dump
      tfa.init(method)
      tfa.run()
      for (bb <- linearizer.linearize(method)) {
        var info = tfa.in(bb)
        for (i <- bb.toList) {
          i match {
            case DUP_X1 =>
              val one = info.stack.types(0)
              val two = info.stack.types(1)
              assert(!one.isWideType, "DUP_X1 expects values of size 1 on top of stack " + info.stack)
              val tmp1 = freshLocal(one)
              val tmp2 = freshLocal(two)
              bb.replaceInstruction(i, List(STORE_LOCAL(tmp1),
                  STORE_LOCAL(tmp2),
                  LOAD_LOCAL(tmp1),
                  LOAD_LOCAL(tmp2),
                  LOAD_LOCAL(tmp1)))

            case DUP_X2 =>
              val one = info.stack.types(0)
              val two = info.stack.types(1)
              assert (!one.isWideType, "DUP_X2 expects values of size 1 on top of stack " + info.stack)
              val tmp1 = freshLocal(one)
              val tmp2 = freshLocal(two)
              if (two.isWideType)
                bb.replaceInstruction(i, List(STORE_LOCAL(tmp1),
                  STORE_LOCAL(tmp2),
                  LOAD_LOCAL(tmp1),
                  LOAD_LOCAL(tmp2),
                  LOAD_LOCAL(tmp1)))
              else {
                val tmp3 = freshLocal(info.stack.types(2))
                bb.replaceInstruction(i, List(STORE_LOCAL(tmp1),
                  STORE_LOCAL(tmp2),
                  STORE_LOCAL(tmp3),
                  LOAD_LOCAL(tmp1),
                  LOAD_LOCAL(tmp3),
                  LOAD_LOCAL(tmp2),
                  LOAD_LOCAL(tmp1)))
              }

            case DUP2_X1 =>
              val one = info.stack.types(0)
              val two = info.stack.types(1)
              val tmp1 = freshLocal(one)
              val tmp2 = freshLocal(two)
              if (one.isWideType) {
                assert(!two.isWideType, "Impossible")
                bb.replaceInstruction(i, List(STORE_LOCAL(tmp1),
                  STORE_LOCAL(tmp2),
                  LOAD_LOCAL(tmp1),
                  LOAD_LOCAL(tmp2),
                  LOAD_LOCAL(tmp1)))
              } else {
                val tmp3 = freshLocal(info.stack.types(2))
                bb.replaceInstruction(i, List(STORE_LOCAL(tmp1),
                  STORE_LOCAL(tmp2),
                  STORE_LOCAL(tmp3),
                  LOAD_LOCAL(tmp1),
                  LOAD_LOCAL(tmp3),
                  LOAD_LOCAL(tmp2),
                  LOAD_LOCAL(tmp1)))
              }

            case DUP2_X2 =>
              val one = info.stack.types(0)
              val two = info.stack.types(1)
              val tmp1 = freshLocal(one)
              val tmp2 = freshLocal(two)
              if (one.isWideType && two.isWideType) {
                bb.replaceInstruction(i, List(STORE_LOCAL(tmp1),
                  STORE_LOCAL(tmp2),
                  LOAD_LOCAL(tmp1),
                  LOAD_LOCAL(tmp2),
                  LOAD_LOCAL(tmp1)))
              } else if (one.isWideType) {
                val three = info.stack.types(2)
                assert(!two.isWideType && !three.isWideType, "Impossible")
                val tmp3 = freshLocal(three)
                bb.replaceInstruction(i, List(STORE_LOCAL(tmp1),
                  STORE_LOCAL(tmp2),
                  STORE_LOCAL(tmp3),
                  LOAD_LOCAL(tmp1),
                  LOAD_LOCAL(tmp3),
                  LOAD_LOCAL(tmp2),
                  LOAD_LOCAL(tmp1)))
              } else {
                val three = info.stack.types(2)
                val tmp3 = freshLocal(three)
                if (three.isWideType) {
                  bb.replaceInstruction(i, List(STORE_LOCAL(tmp1),
                      STORE_LOCAL(tmp2),
                      STORE_LOCAL(tmp3),
                      LOAD_LOCAL(tmp2),
                      LOAD_LOCAL(tmp1),
                      LOAD_LOCAL(tmp3),
                      LOAD_LOCAL(tmp2),
                      LOAD_LOCAL(tmp1)))
                } else {
                  val four = info.stack.types(3)
                  val tmp4 = freshLocal(three)
                  assert(!four.isWideType, "Impossible")
                  bb.replaceInstruction(i, List(STORE_LOCAL(tmp1),
                      STORE_LOCAL(tmp2),
                      STORE_LOCAL(tmp3),
                      STORE_LOCAL(tmp4),
                      LOAD_LOCAL(tmp2),
                      LOAD_LOCAL(tmp1),
                      LOAD_LOCAL(tmp4),
                      LOAD_LOCAL(tmp3),
                      LOAD_LOCAL(tmp2),
                      LOAD_LOCAL(tmp1)))
                }
              }
            case _ =>
          }
          info = tfa.interpret(info, i)
        }
      }
    }

    /** Recover def-use chains for NEW and initializers. */
    def resolveNEWs() {
      import opcodes._
      val rdef = new reachingDefinitions.ReachingDefinitionsAnalysis
      rdef.init(method)
      rdef.run()

      for (bb <- method.code.blocks ; (i, idx) <- bb.toList.zipWithIndex) i match {
        case cm @ CALL_METHOD(m, Static(true)) if m.isClassConstructor =>
          def loop(bb0: BasicBlock, idx0: Int, depth: Int): Unit = {
            rdef.findDefs(bb0, idx0, 1, depth) match {
              case ((bb1, idx1)) :: _ =>
                bb1(idx1) match {
                  case _: DUP   => loop(bb1, idx1, 0)
                  case x: NEW   => x.init = cm
                  case _: THIS  => () // super constructor call
                  case producer => dumpMethodAndAbort(method, "producer: " + producer)
                }
              case _ => ()
            }
          }
          loop(bb, idx, m.info.paramTypes.length)

        case _ => ()
      }
    }

    /** Return the local at given index, with the given type. */
    def getLocal(idx: Char, kind: TypeKind): Local = getLocal(idx.toInt, kind)
    def getLocal(idx: Int, kind: TypeKind): Local = {
      assert(idx < maxLocals, "Index too large for local variable.")

      def checkValidIndex() {
        locals.get(idx - 1) match {
          case Some(others) if others exists (_._2.isWideType) =>
            global.globalError("Illegal index: " + idx + " points in the middle of another local")
          case _ => ()
        }
        kind match {
          case LONG | DOUBLE if (locals.isDefinedAt(idx + 1)) =>
            global.globalError("Illegal index: " + idx + " overlaps " + locals(idx + 1) + "\nlocals: " + locals)
          case _ => ()
        }
      }

      locals.get(idx) match {
        case Some(ls) =>
          val l = ls find { loc => loc._2 isAssignabledTo kind }
          l match {
            case Some((loc, _)) => loc
            case None =>
              val l = freshLocal(kind)
              locals(idx) = (l, kind) :: locals(idx)
              log("Expected kind " + kind + " for local " + idx +
                " but only " + ls + " found. Added new local.")
              l
          }
        case None =>
          checkValidIndex()
          val l = freshLocal(idx, kind, isArg = false)
          debuglog("Added new local for idx " + idx + ": " + kind)
          locals += (idx -> List((l, kind)))
          l
      }
    }

    override def toString(): String = instrs.toList.mkString("", "\n", "")

    /** Return a fresh Local variable for the given index.
     */
    private def freshLocal(idx: Int, kind: TypeKind, isArg: Boolean) = {
      val sym = method.symbol.newVariable(newTermName("loc" + idx)).setInfo(kind.toType)
      val l = new Local(sym, kind, isArg)
      method.addLocal(l)
      l
    }

    private var count = 0

    /** Invent a new local, with a new index value outside the range of
     *  the original method. */
    def freshLocal(kind: TypeKind): Local = {
      count += 1
      freshLocal(maxLocals + count, kind, isArg = false)
    }

    /** add a method param with the given index. */
    def enterParam(idx: Int, kind: TypeKind) = {
      val sym = method.symbol.newVariable(newTermName("par" + idx)).setInfo(kind.toType)
      val l = new Local(sym, kind, true)
      assert(!locals.isDefinedAt(idx), locals(idx))
      locals += (idx -> List((l, kind)))
      l
    }

    /** Base class for branch instructions that take addresses. */
    abstract class LazyJump(pc: Int) extends Instruction {
      override def toString() = "LazyJump " + pc
      jmpTargets += pc
    }

    case class LJUMP(pc: Int) extends LazyJump(pc)

    case class LCJUMP(success: Int, failure: Int, cond: TestOp, kind: TypeKind)
      extends LazyJump(success) {
      override def toString(): String = "LCJUMP (" + kind + ") " + success + " : " + failure

      jmpTargets += failure
    }

    case class LCZJUMP(success: Int, failure: Int, cond: TestOp, kind: TypeKind)
      extends LazyJump(success) {
      override def toString(): String = "LCZJUMP (" + kind + ") " + success + " : " + failure

      jmpTargets += failure
    }

    case class LSWITCH(tags: List[List[Int]], targets: List[Int]) extends LazyJump(targets.head) {
      override def toString(): String = "LSWITCH (tags: " + tags + ") targets: " + targets

      jmpTargets ++= targets.tail
    }

    /** Duplicate and exchange pseudo-instruction. Should be later
     *  replaced by proper ICode */
    abstract class DupX extends Instruction

    case object DUP_X1 extends DupX
    case object DUP_X2 extends DupX
    case object DUP2_X1 extends DupX
    case object DUP2_X2 extends DupX
  }
}

Other Scala source code examples

Here is a short list of links related to this Scala ICodeReader.scala source code file:

... this post is sponsored by my books ...

#1 New Release!

FP Best Seller

 

new blog posts

 

Copyright 1998-2024 Alvin Alexander, alvinalexander.com
All Rights Reserved.

A percentage of advertising revenue from
pages under the /java/jwarehouse URI on this website is
paid back to open source projects.