alvinalexander.com | career | drupal | java | mac | mysql | perl | scala | uml | unix  

Scala example source code file (Constructors.scala)

This example Scala source code file (Constructors.scala) is included in my "Source Code Warehouse" project. The intent of this project is to help you more easily find Scala source code examples by using tags.

All credit for the original source code belongs to scala-lang.org; I'm just trying to make examples easier to find. (For my Scala work, see my Scala examples and tutorials.)

Scala tags/keywords

block, collection, compiler, defdef, list, listbuffer, mutable, nil, nsc, select, symbol, templatetransformer, tree, valdef

The Constructors.scala Scala example source code

/*  NSC -- new Scala compiler
 * Copyright 2005-2013 LAMP/EPFL
 * @author
 */

package scala.tools.nsc
package transform

import scala.collection.{ mutable, immutable }
import scala.collection.mutable.ListBuffer
import symtab.Flags._

/** This phase converts classes with parameters into Java-like classes with
 *  fields, which are assigned to from constructors.
 */
abstract class Constructors extends Statics with Transform with ast.TreeDSL {
  import global._
  import definitions._

  /** the following two members override abstract members in Transform */
  val phaseName: String = "constructors"

  protected def newTransformer(unit: CompilationUnit): Transformer =
    new ConstructorTransformer(unit)

  private val guardedCtorStats: mutable.Map[Symbol, List[Tree]] = perRunCaches.newMap[Symbol, List[Tree]]()
  private val ctorParams: mutable.Map[Symbol, List[Symbol]] = perRunCaches.newMap[Symbol, List[Symbol]]()

  class ConstructorTransformer(unit: CompilationUnit) extends Transformer {

    /*
     * Inspect for obvious out-of-order initialization; concrete, eager vals or vars, declared in this class,
     * for which a reference to the member precedes its definition.
     */
    private def checkUninitializedReads(cd: ClassDef) {
      val stats = cd.impl.body
      val clazz = cd.symbol

      def checkableForInit(sym: Symbol) = (
           (sym ne null)
        && (sym.isVal || sym.isVar)
        && !(sym hasFlag LAZY | DEFERRED | SYNTHETIC)
      )
      val uninitializedVals = mutable.Set[Symbol](
        stats collect { case vd: ValDef if checkableForInit(vd.symbol) => vd.symbol.accessedOrSelf }: _*
      )
      if (uninitializedVals.size > 1)
        log("Checking constructor for init order issues among: " + uninitializedVals.toList.map(_.name.toString.trim).distinct.sorted.mkString(", "))

      for (stat <- stats) {
        // Checking the qualifier symbol is necessary to prevent a selection on
        // another instance of the same class from potentially appearing to be a forward
        // reference on the member in the current class.
        def check(tree: Tree) = {
          for (t <- tree) t match {
            case t: RefTree if uninitializedVals(t.symbol.accessedOrSelf) && t.qualifier.symbol == clazz =>
              unit.warning(t.pos, s"Reference to uninitialized ${t.symbol.accessedOrSelf}")
            case _ =>
          }
        }
        stat match {
          case vd: ValDef      =>
            // doing this first allows self-referential vals, which to be a conservative
            // warner we will do because it's possible though difficult for it to be useful.
            uninitializedVals -= vd.symbol.accessedOrSelf
            if (!vd.symbol.isLazy)
              check(vd.rhs)
          case _: MemberDef    => // skip other member defs
          case t               => check(t) // constructor body statement
        }
      }

    } // end of checkUninitializedReads()

    override def transform(tree: Tree): Tree = {
      tree match {
        case cd @ ClassDef(mods0, name0, tparams0, impl0) if !cd.symbol.isInterface && !isPrimitiveValueClass(cd.symbol) =>
          if(cd.symbol eq AnyValClass) {
            cd
          }
          else {
            checkUninitializedReads(cd)
            val tplTransformer = new TemplateTransformer(unit, impl0)
            treeCopy.ClassDef(cd, mods0, name0, tparams0, tplTransformer.transformed)
          }
        case _ =>
          super.transform(tree)
      }
    }

  } // ConstructorTransformer

  /*
   * Summary
   * -------
   *
   * The following gets elided unless they're actually needed:
   *   (a) parameter-accessor fields for non-val, non-var, constructor-param-symbols, as well as
   *   (b) outer accessors of a final class which don't override anything.
   *
   *
   * Gory details
   * ------------
   *
   * The constructors phase elides
   *
   *  (a) parameter-accessor fields for non-val, non-var, constructor-param-symbols
   *      provided they're only accessed within the primary constructor;
   *
   * as well as
   *
   *  (b) outer accessors directly owned by the class of interest,
   *      provided that class is final, they don't override anything, and moreover they aren't accessed anywhere.
   *      An outer accessor is backed by a param-accessor field.
   *      If an outer-accessor can be elided then its supporting field can be elided as well.
   *
   * Once the potential candidates for elision are known (as described above) it remains to visit
   * those program locations where they might be accessed, and only those.
   *
   * What trees can be visited at this point?
   * To recap, by the time the constructors phase runs, local definitions have been hoisted out of their original owner.
   * Moreover, by the time elision is about to happen, the `intoConstructors` rewriting
   * of template-level statements has taken place (the resulting trees can be found in `constrStatBuf`).
   *
   * That means:
   *
   *   - nested classes are to be found in `defBuf`
   *
   *   - value and method definitions are also in `defBuf` and none of them contains local methods or classes.
   *
   *   - auxiliary constructors are to be found in `auxConstructorBuf`
   *
   * Coming back to the question which trees may contain accesses:
   *
   *   (c) regarding parameter-accessor fields, all candidates in (a) are necessarily private-local,
   *       and thus may only be accessed from value or method definitions owned by the current class
   *       (ie there's no point drilling down into nested classes).
   *
   *   (d) regarding candidates in (b), they are accesible from all places listed in (c) and in addition
   *       from nested classes (nested at any number of levels).
   *
   * In all cases, we're done with traversing as soon as all candidates have been ruled out.
   *
   * Finally, the whole affair of eliding is avoided for DelayedInit subclasses,
   * given that for them usually nothing gets elided anyway.
   * That's a consequence from re-locating the post-super-calls statements from their original location
   * (the primary constructor) into a dedicated synthetic method that an anon-closure may invoke, as required by DelayedInit.
   *
   */
  private trait OmittablesHelper { self: TemplateTransformer =>

    /*
     * Initially populated with all elision candidates.
     * Trees are traversed, and those candidates are removed which are actually needed.
     * After that, `omittables` doesn't shrink anymore: each symbol it contains can be unlinked from clazz.info.decls.
     */
    val omittables = mutable.Set.empty[Symbol]

    def populateOmittables() {

      omittables.clear()

      if(isDelayedInitSubclass) {
        return
      }

      def isParamCandidateForElision(sym: Symbol) = (sym.isParamAccessor && sym.isPrivateLocal)
      def isOuterCandidateForElision(sym: Symbol) = (sym.isOuterAccessor && sym.owner.isEffectivelyFinal && !sym.isOverridingSymbol)

      val paramCandidatesForElision: Set[ /*Field*/  Symbol] = (clazz.info.decls.toSet filter isParamCandidateForElision)
      val outerCandidatesForElision: Set[ /*Method*/ Symbol] = (clazz.info.decls.toSet filter isOuterCandidateForElision)

      omittables ++= paramCandidatesForElision
      omittables ++= outerCandidatesForElision

      val bodyOfOuterAccessor: Map[Symbol, DefDef] =
        defBuf.collect { case dd: DefDef if outerCandidatesForElision(dd.symbol) => dd.symbol -> dd }.toMap

      // no point traversing further once omittables is empty, all candidates ruled out already.
      object detectUsages extends Traverser {
        private def markUsage(sym: Symbol) {
          omittables -= debuglogResult("omittables -= ")(sym)
          // recursive call to mark as needed the field supporting the outer-accessor-method.
          bodyOfOuterAccessor get sym foreach (this traverse _.rhs)
        }
        override def traverse(tree: Tree): Unit = if (omittables.nonEmpty) {
          def sym = tree.symbol
          tree match {
            // don't mark as "needed" the field supporting this outer-accessor, ie not just yet.
            case _: DefDef if outerCandidatesForElision(sym) => ()
            case _: Select if omittables(sym)                => markUsage(sym) ; super.traverse(tree)
            case _                                           => super.traverse(tree)
          }
        }
        def walk(xs: Seq[Tree]) = xs.iterator foreach traverse
      }
      if (omittables.nonEmpty) {
        detectUsages walk defBuf
        detectUsages walk auxConstructorBuf
      }
    }
    def mustBeKept(sym: Symbol) = !omittables(sym)

  } // OmittablesHelper

  /*
   *  TemplateTransformer rewrites DelayedInit subclasses.
   *  The list of statements that will end up in the primary constructor can be split into:
   *
   *    (a) up to and including the super-constructor call.
   *        These statements can occur only in the (bytecode-level) primary constructor.
   *
   *    (b) remaining statements
   *
   *  The purpose of DelayedInit is leaving (b) out of the primary constructor and have their execution "delayed".
   *
   *  The rewriting to achieve "delayed initialization" involves:
   *    (c) an additional, synthetic, public method encapsulating (b)
   *    (d) an additional, synthetic closure whose argless apply() just invokes (c)
   *    (e) after executing the statements in (a),
   *        the primary constructor instantiates (d) and passes it as argument
   *        to a `delayedInit()` invocation on the current instance.
   *        In turn, `delayedInit()` is a method defined as abstract in the `DelayedInit` trait
   *        so that it can be overridden (for an example see `scala.App`)
   *
   *  The following helper methods prepare Trees as part of this rewriting:
   *
   *    (f) `delayedEndpointDef()` prepares (c).
   *        A transformer, `constrStatTransformer`, is used to re-locate statements (b) from template-level
   *        to become statements in method (c). The main task here is re-formulating accesses to params
   *        of the primary constructors (to recap, (c) has zero-params) in terms of param-accessor fields.
   *        In a Delayed-Init subclass, each class-constructor gets a param-accessor field because `mustbeKept()` forces it.
   *
   *    (g) `delayedInitClosure()` prepares (d)
   *
   *    (h) `delayedInitCall()`    prepares the `delayedInit()` invocation referred to in (e)
   *
   *  Both (c) and (d) are added to the Template returned by `transformClassTemplate()`
   *
   *  A note of historic interest: Previously the rewriting for DelayedInit would include in the closure body
   *  all of the delayed initialization sequence, which in turn required:
   *    - reformulating "accesses-on-this" into "accesses-on-outer", and
   *    - adding public getters and setters.
   *
   *  @param stats the statements in (b) above
   *
   *  @return the DefDef for (c) above
   *
   * */
  private trait DelayedInitHelper { self: TemplateTransformer =>

    private def delayedEndpointDef(stats: List[Tree]): DefDef = {

      val methodName = currentUnit.freshTermName("delayedEndpoint$" + clazz.fullNameAsName('$').toString + "$")
      val methodSym  = clazz.newMethod(methodName, impl.pos, SYNTHETIC | FINAL)
      methodSym setInfoAndEnter MethodType(Nil, UnitTpe)

      // changeOwner needed because the `stats` contained in the DefDef were owned by the template, not long ago.
      val blk       = Block(stats, gen.mkZero(UnitTpe)).changeOwner(impl.symbol -> methodSym)
      val delayedDD = localTyper typed { DefDef(methodSym, Nil, blk) }

      delayedDD.asInstanceOf[DefDef]
    }

    private def delayedInitClosure(delayedEndPointSym: MethodSymbol): ClassDef = {
      val satelliteClass = localTyper.typed {
        atPos(impl.pos) {
          val closureClass   = clazz.newClass(nme.delayedInitArg.toTypeName, impl.pos, SYNTHETIC | FINAL)
          val closureParents = List(AbstractFunctionClass(0).tpe)

          closureClass setInfoAndEnter new ClassInfoType(closureParents, newScope, closureClass)

          val outerField: TermSymbol = (
            closureClass
              newValue(nme.OUTER, impl.pos, PrivateLocal | PARAMACCESSOR)
              setInfoAndEnter clazz.tpe
          )
          val applyMethod: MethodSymbol = (
            closureClass
              newMethod(nme.apply, impl.pos, FINAL)
              setInfoAndEnter MethodType(Nil, ObjectTpe)
          )
          val outerFieldDef     = ValDef(outerField)
          val closureClassTyper = localTyper.atOwner(closureClass)
          val applyMethodTyper  = closureClassTyper.atOwner(applyMethod)

          def applyMethodStat =
            applyMethodTyper.typed {
              atPos(impl.pos) {
                val receiver = Select(This(closureClass), outerField)
                Apply(Select(receiver, delayedEndPointSym), Nil)
              }
            }

          val applyMethodDef = DefDef(
            sym = applyMethod,
            vparamss = ListOfNil,
            rhs = Block(applyMethodStat, gen.mkAttributedRef(BoxedUnit_UNIT)))

          ClassDef(
            sym = closureClass,
            constrMods = Modifiers(0),
            vparamss = List(List(outerFieldDef)),
            body = applyMethodDef :: Nil,
            superPos = impl.pos)
        }
      }

      satelliteClass.asInstanceOf[ClassDef]
    }

    private def delayedInitCall(closure: Tree) = localTyper.typedPos(impl.pos) {
      gen.mkMethodCall(This(clazz), delayedInitMethod, Nil, List(New(closure.symbol.tpe, This(clazz))))
    }

    def rewriteDelayedInit() {
      /* XXX This is not corect: remainingConstrStats.nonEmpty excludes too much,
       * but excluding it includes too much.  The constructor sequence being mimicked
       * needs to be reproduced with total fidelity.
       *
       * See test case files/run/bug4680.scala, the output of which is wrong in many
       * particulars.
       */
      val needsDelayedInit = (isDelayedInitSubclass && remainingConstrStats.nonEmpty)

      if (needsDelayedInit) {
        val delayedHook: DefDef = delayedEndpointDef(remainingConstrStats)
        defBuf += delayedHook
        val hookCallerClass = {
          // transform to make the closure-class' default constructor assign the the outer instance to its param-accessor field.
          val drillDown = new ConstructorTransformer(unit)
          drillDown transform delayedInitClosure(delayedHook.symbol.asInstanceOf[MethodSymbol])
        }
        defBuf += hookCallerClass
        remainingConstrStats = delayedInitCall(hookCallerClass) :: Nil
      }
    }

  } // DelayedInitHelper

  private trait GuardianOfCtorStmts { self: TemplateTransformer =>

    /* Return a single list of statements, merging the generic class constructor with the
     * specialized stats. The original statements are retyped in the current class, and
     * assignments to generic fields that have a corresponding specialized assignment in
     * `specializedStats` are replaced by the specialized assignment.
     */
    private def mergeConstructors(genericClazz: Symbol, originalStats: List[Tree], specializedStats: List[Tree]): List[Tree] = {
      val specBuf = new ListBuffer[Tree]
      specBuf ++= specializedStats

      def specializedAssignFor(sym: Symbol): Option[Tree] =
        specializedStats find {
          case Assign(sel @ Select(This(_), _), _) =>
            sel.symbol.isSpecialized && (nme.unspecializedName(sel.symbol.getterName) == sym.getterName)
          case _ => false
        }

      /* Rewrite calls to ScalaRunTime.array_update to the proper apply method in scala.Array.
       * Erasure transforms Array.update to ScalaRunTime.update when the element type is a type
       * variable, but after specialization this is a concrete primitive type, so it would
       * be an error to pass it to array_update(.., .., Object).
       */
      def rewriteArrayUpdate(tree: Tree): Tree = {
        val arrayUpdateMethod = currentRun.runDefinitions.arrayUpdateMethod
        val adapter = new Transformer {
          override def transform(t: Tree): Tree = t match {
            case Apply(fun @ Select(receiver, method), List(xs, idx, v)) if fun.symbol == arrayUpdateMethod =>
              localTyper.typed(Apply(gen.mkAttributedSelect(xs, arrayUpdateMethod), List(idx, v)))
            case _ => super.transform(t)
          }
        }
        adapter.transform(tree)
      }

      log("merging: " + originalStats.mkString("\n") + "\nwith\n" + specializedStats.mkString("\n"))
      val res = for (s <- originalStats; stat = s.duplicate) yield {
        log("merge: looking at " + stat)
        val stat1 = stat match {
          case Assign(sel @ Select(This(_), field), _) =>
            specializedAssignFor(sel.symbol).getOrElse(stat)
          case _ => stat
        }
        if (stat1 ne stat) {
          log("replaced " + stat + " with " + stat1)
          specBuf -= stat1
        }

        if (stat1 eq stat) {
          assert(ctorParams(genericClazz).length == constrInfo.constrParams.length)
          // this is just to make private fields public
          (new specializeTypes.ImplementationAdapter(ctorParams(genericClazz), constrInfo.constrParams, null, true))(stat1)

          val stat2 = rewriteArrayUpdate(stat1)
          // statements coming from the original class need retyping in the current context
          debuglog("retyping " + stat2)

          val d = new specializeTypes.Duplicator(Map[Symbol, Type]())
          d.retyped(localTyper.context1.asInstanceOf[d.Context],
                    stat2,
                    genericClazz,
                    clazz,
                    Map.empty)
        } else
          stat1
      }
      if (specBuf.nonEmpty)
        println("residual specialized constructor statements: " + specBuf)
      res
    }

    /* Add an 'if' around the statements coming after the super constructor. This
     * guard is necessary if the code uses specialized fields. A specialized field is
     * initialized in the subclass constructor, but the accessors are (already) overridden
     * and pointing to the (empty) fields. To fix this, a class with specialized fields
     * will not run its constructor statements if the instance is specialized. The specialized
     * subclass includes a copy of those constructor statements, and runs them. To flag that a class
     * has specialized fields, and their initialization should be deferred to the subclass, method
     * 'specInstance$' is added in phase specialize.
     */
    def guardSpecializedInitializer(stats: List[Tree]): List[Tree] = if (settings.nospecialization.value) stats else {
      // // split the statements in presuper and postsuper
      // var (prefix, postfix) = stats0.span(tree => !((tree.symbol ne null) && tree.symbol.isConstructor))
      // if (postfix.nonEmpty) {
      //   prefix = prefix :+ postfix.head
      //   postfix = postfix.tail
      // }

      if (shouldGuard && usesSpecializedField && stats.nonEmpty) {
        // save them for duplication in the specialized subclass
        guardedCtorStats(clazz) = stats
        ctorParams(clazz) = constrInfo.constrParams

        val tree =
          If(
            Apply(
              CODE.NOT (
               Apply(gen.mkAttributedRef(specializedFlag), List())),
              List()),
            Block(stats, Literal(Constant(()))),
            EmptyTree)

        List(localTyper.typed(tree))
      }
      else if (clazz.hasFlag(SPECIALIZED)) {
        // add initialization from its generic class constructor
        val genericName  = nme.unspecializedName(clazz.name)
        val genericClazz = clazz.owner.info.decl(genericName.toTypeName)
        assert(genericClazz != NoSymbol, clazz)

        guardedCtorStats.get(genericClazz) match {
          case Some(stats1) => mergeConstructors(genericClazz, stats1, stats)
          case None => stats
        }
      } else stats
    }

  } // GuardianOfCtorStmts

  private class TemplateTransformer(val unit: CompilationUnit, val impl: Template)
    extends StaticsTransformer
    with    DelayedInitHelper
    with    OmittablesHelper
    with    GuardianOfCtorStmts {

    val clazz = impl.symbol.owner  // the transformed class
    val stats = impl.body          // the transformed template body
    val localTyper = typer.atOwner(impl, clazz)

    val specializedFlag: Symbol = clazz.info.decl(nme.SPECIALIZED_INSTANCE)
    val shouldGuard = (specializedFlag != NoSymbol) && !clazz.hasFlag(SPECIALIZED)

    val isDelayedInitSubclass = (clazz isSubClass DelayedInitClass)

    case class ConstrInfo(
      constr: DefDef,               // The primary constructor
      constrParams: List[Symbol],   // ... and its parameters
      constrBody: Block             // ... and its body
    )
    // decompose primary constructor into the three entities above.
    val constrInfo: ConstrInfo = {
      val ddef = (stats find (_.symbol.isPrimaryConstructor))
      ddef match {
        case Some(ddef @ DefDef(_, _, _, List(vparams), _, rhs @ Block(_, _))) =>
          ConstrInfo(ddef, vparams map (_.symbol), rhs)
        case x =>
          abort("no constructor in template: impl = " + impl)
      }
    }
    import constrInfo._

    // The parameter accessor fields which are members of the class
    val paramAccessors = clazz.constrParamAccessors

    // The constructor parameter corresponding to an accessor
    def parameter(acc: Symbol): Symbol = parameterNamed(acc.unexpandedName.getterName)

    // The constructor parameter with given name. This means the parameter
    // has given name, or starts with given name, and continues with a `$` afterwards.
    def parameterNamed(name: Name): Symbol = {
      def matchesName(param: Symbol) = param.name == name || param.name.startsWith(name + nme.NAME_JOIN_STRING)

      (constrParams filter matchesName) match {
        case Nil    => abort(name + " not in " + constrParams)
        case p :: _ => p
      }
    }

    /*
     * `usesSpecializedField` makes a difference in deciding whether constructor-statements
     * should be guarded in a `shouldGuard` class, ie in a class that's the generic super-class of
     * one or more specialized sub-classes.
     *
     * Given that `usesSpecializedField` isn't read for any other purpose than the one described above,
     * we skip setting `usesSpecializedField` in case the current class isn't `shouldGuard` to start with.
     * That way, trips to a map in `specializeTypes` are saved.
     */
    var usesSpecializedField: Boolean = false

    // A transformer for expressions that go into the constructor
    private class IntoCtorTransformer extends Transformer {

      private def isParamRef(sym: Symbol) = (sym.isParamAccessor && sym.owner == clazz)

      // Terminology: a stationary location is never written after being read.
      private def isStationaryParamRef(sym: Symbol) = (
        isParamRef(sym) &&
        !(sym.isGetter && sym.accessed.isVariable) &&
        !sym.isSetter
      )

      private def possiblySpecialized(s: Symbol) = specializeTypes.specializedTypeVars(s).nonEmpty

      /*
       * whether `sym` denotes a param-accessor (ie a field) that fulfills all of:
       *   (a) has stationary value, ie the same value provided via the corresponding ctor-arg; and
       *   (b) isn't subject to specialization. We might be processing statements for:
       *         (b.1) the constructur in the generic   (super-)class; or
       *         (b.2) the constructor in the specialized (sub-)class.
       *   (c) isn't part of a DelayedInit subclass.
       */
      private def canBeSupplanted(sym: Symbol) = (!isDelayedInitSubclass && isStationaryParamRef(sym) && !possiblySpecialized(sym))

      override def transform(tree: Tree): Tree = tree match {

        case Apply(Select(This(_), _), List()) =>
          // references to parameter accessor methods of own class become references to parameters
          // outer accessors become references to $outer parameter
          if (canBeSupplanted(tree.symbol))
            gen.mkAttributedIdent(parameter(tree.symbol.accessed)) setPos tree.pos
          else if (tree.symbol.outerSource == clazz && !clazz.isImplClass)
            gen.mkAttributedIdent(parameterNamed(nme.OUTER)) setPos tree.pos
          else
            super.transform(tree)

        case Select(This(_), _) if canBeSupplanted(tree.symbol) =>
          // references to parameter accessor field of own class become references to parameters
          gen.mkAttributedIdent(parameter(tree.symbol)) setPos tree.pos

        case Select(_, _) if shouldGuard => // reasoning behind this guard in the docu of `usesSpecializedField`
          if (possiblySpecialized(tree.symbol)) {
            usesSpecializedField = true
          }
          super.transform(tree)

        case _ =>
          super.transform(tree)
      }

    }

    private val intoConstructorTransformer = new IntoCtorTransformer

    // Move tree into constructor, take care of changing owner from `oldowner` to constructor symbol
    def intoConstructor(oldowner: Symbol, tree: Tree) =
      intoConstructorTransformer transform tree.changeOwner(oldowner -> constr.symbol)

    // Should tree be moved in front of super constructor call?
    def canBeMoved(tree: Tree) = tree match {
      case ValDef(mods, _, _, _) => (mods hasFlag PRESUPER | PARAMACCESSOR)
      case _                     => false
    }

    // Create an assignment to class field `to` with rhs `from`
    def mkAssign(to: Symbol, from: Tree): Tree =
      localTyper.typedPos(to.pos) { Assign(Select(This(clazz), to), from) }

    // Create code to copy parameter to parameter accessor field.
    // If parameter is $outer, check that it is not null so that we NPE
    // here instead of at some unknown future $outer access.
    def copyParam(to: Symbol, from: Symbol): Tree = {
      import CODE._
      val result = mkAssign(to, Ident(from))

      if (from.name != nme.OUTER ||
          from.tpe.typeSymbol.isPrimitiveValueClass) result
      else localTyper.typedPos(to.pos) {
        // `throw null` has the same effect as `throw new NullPointerException`, see JVM spec on instruction `athrow`
        IF (from OBJ_EQ NULL) THEN Throw(gen.mkZero(ThrowableTpe)) ELSE result
      }
    }

    // The list of definitions that go into class
    val defBuf = new ListBuffer[Tree]

    // The auxiliary constructors, separate from the defBuf since they should
    // follow the primary constructor
    val auxConstructorBuf = new ListBuffer[Tree]

    // The list of statements that go into the constructor after and including the superclass constructor call
    val constrStatBuf = new ListBuffer[Tree]

    // The list of early initializer statements that go into constructor before the superclass constructor call
    val constrPrefixBuf = new ListBuffer[Tree]

    // The early initialized field definitions of the class (these are the class members)
    val presupers = treeInfo.preSuperFields(stats)

    // The list of statements that go into the class initializer
    val classInitStatBuf = new ListBuffer[Tree]

    // generate code to copy pre-initialized fields
    for (stat <- constrBody.stats) {
      constrStatBuf += stat
      stat match {
        case ValDef(mods, name, _, _) if (mods hasFlag PRESUPER) =>
          // stat is the constructor-local definition of the field value
          val fields = presupers filter (_.getterName == name)
          assert(fields.length == 1)
          val to = fields.head.symbol
          if (!to.tpe.isInstanceOf[ConstantType])
            constrStatBuf += mkAssign(to, Ident(stat.symbol))
        case _ =>
      }
    }

    // Triage all template definitions to go into defBuf/auxConstructorBuf, constrStatBuf, or constrPrefixBuf.
    for (stat <- stats) stat match {
      case DefDef(_,_,_,_,_,rhs) =>
        // methods with constant result type get literals as their body
        // all methods except the primary constructor go into template
        stat.symbol.tpe match {
          case MethodType(List(), tp @ ConstantType(c)) =>
            defBuf += deriveDefDef(stat)(Literal(c) setPos _.pos setType tp)
          case _ =>
            if (stat.symbol.isPrimaryConstructor) ()
            else if (stat.symbol.isConstructor) auxConstructorBuf += stat
            else defBuf += stat
        }
      case ValDef(mods, _, _, rhs) if !mods.hasStaticFlag =>
        // val defs with constant right-hand sides are eliminated.
        // for all other val defs, an empty valdef goes into the template and
        // the initializer goes as an assignment into the constructor
        // if the val def is an early initialized or a parameter accessor, it goes
        // before the superclass constructor call, otherwise it goes after.
        // Lazy vals don't get the assignment in the constructor.
        if (!stat.symbol.tpe.isInstanceOf[ConstantType]) {
          if (rhs != EmptyTree && !stat.symbol.isLazy) {
            val rhs1 = intoConstructor(stat.symbol, rhs)
            (if (canBeMoved(stat)) constrPrefixBuf else constrStatBuf) += mkAssign(
              stat.symbol, rhs1)
          }
          defBuf += deriveValDef(stat)(_ => EmptyTree)
        }
      case ValDef(_, _, _, rhs) =>
        // Add static initializer statements to classInitStatBuf and remove the rhs from the val def.
        classInitStatBuf += mkAssign(stat.symbol, rhs)
        defBuf += deriveValDef(stat)(_ => EmptyTree)

      case ClassDef(_, _, _, _) =>
        // classes are treated recursively, and left in the template
        defBuf += new ConstructorTransformer(unit).transform(stat)
      case _ =>
        // all other statements go into the constructor
        constrStatBuf += intoConstructor(impl.symbol, stat)
    }

    populateOmittables()

    // Initialize all parameters fields that must be kept.
    val paramInits = paramAccessors filter mustBeKept map { acc =>
      // Check for conflicting symbol amongst parents: see bug #1960.
      // It would be better to mangle the constructor parameter name since
      // it can only be used internally, but I think we need more robust name
      // mangling before we introduce more of it.
      val conflict = clazz.info.nonPrivateMember(acc.name) filter (s => s.isGetter && !s.isOuterField && s.enclClass.isTrait)
      if (conflict ne NoSymbol)
        unit.error(acc.pos, "parameter '%s' requires field but conflicts with %s".format(acc.name, conflict.fullLocationString))

      copyParam(acc, parameter(acc))
    }

    /* Return a pair consisting of (all statements up to and including superclass and trait constr calls, rest) */
    def splitAtSuper(stats: List[Tree]) = {
      def isConstr(tree: Tree): Boolean = tree match {
        case Block(_, expr) => isConstr(expr)  // SI-6481 account for named argument blocks
        case _              => (tree.symbol ne null) && tree.symbol.isConstructor
      }
      val (pre, rest0) = stats span (!isConstr(_))
      val (supercalls, rest) = rest0 span (isConstr(_))
      (pre ::: supercalls, rest)
    }

    val (uptoSuperStats, remainingConstrStats0) = splitAtSuper(constrStatBuf.toList)
    var remainingConstrStats = remainingConstrStats0

    rewriteDelayedInit()

    // Assemble final constructor
    defBuf += deriveDefDef(constr)(_ =>
      treeCopy.Block(
        constrBody,
        paramInits ::: constrPrefixBuf.toList ::: uptoSuperStats :::
          guardSpecializedInitializer(remainingConstrStats),
        constrBody.expr))

    // Followed by any auxiliary constructors
    defBuf ++= auxConstructorBuf

    // Unlink all fields that can be dropped from class scope
    for (sym <- clazz.info.decls ; if !mustBeKept(sym))
      clazz.info.decls unlink sym

    // Eliminate all field definitions that can be dropped from template
    val templateWithoutOmittables: Template = deriveTemplate(impl)(_ => defBuf.toList filter (stat => mustBeKept(stat.symbol)))
    //  Add the static initializers
    val transformed: Template = addStaticInits(templateWithoutOmittables, classInitStatBuf, localTyper)

  } // TemplateTransformer

}

Other Scala source code examples

Here is a short list of links related to this Scala Constructors.scala source code file:

... this post is sponsored by my books ...

#1 New Release!

FP Best Seller

 

new blog posts

 

Copyright 1998-2024 Alvin Alexander, alvinalexander.com
All Rights Reserved.

A percentage of advertising revenue from
pages under the /java/jwarehouse URI on this website is
paid back to open source projects.