alvinalexander.com | career | drupal | java | mac | mysql | perl | scala | uml | unix  

Scala example source code file (Erasure.scala)

This example Scala source code file (Erasure.scala) is included in my "Source Code Warehouse" project. The intent of this project is to help you more easily find Scala source code examples by using tags.

All credit for the original source code belongs to scala-lang.org; I'm just trying to make examples easier to find. (For my Scala work, see my Scala examples and tutorials.)

Scala tags/keywords

apply, collection, compiler, list, nil, nsc, refinedtype, select, string, symbol, tree, type, typeapply

The Erasure.scala Scala example source code

/* NSC -- new Scala compiler
 * Copyright 2005-2013 LAMP/EPFL
 * @author Martin Odersky
 */

package scala.tools.nsc
package transform

import scala.reflect.internal.ClassfileConstants._
import scala.collection.{ mutable, immutable }
import symtab._
import Flags._
import scala.reflect.internal.Mode._

abstract class Erasure extends AddInterfaces
                          with scala.reflect.internal.transform.Erasure
                          with typechecker.Analyzer
                          with TypingTransformers
                          with ast.TreeDSL
                          with TypeAdaptingTransformer
{
  import global._
  import definitions._
  import CODE._

  val analyzer: typechecker.Analyzer { val global: Erasure.this.global.type } =
    this.asInstanceOf[typechecker.Analyzer { val global: Erasure.this.global.type }]

  val phaseName: String = "erasure"

  def newTransformer(unit: CompilationUnit): Transformer =
    new ErasureTransformer(unit)

  override def keepsTypeParams = false

// -------- erasure on types --------------------------------------------------------

  // convert a numeric with a toXXX method
  def numericConversion(tree: Tree, numericSym: Symbol): Tree = {
    val mname      = newTermName("to" + numericSym.name)
    val conversion = tree.tpe member mname

    assert(conversion != NoSymbol, tree + " => " + numericSym)
    atPos(tree.pos)(Apply(Select(tree, conversion), Nil))
  }

  private object NeedsSigCollector extends TypeCollector(false) {
    def traverse(tp: Type) {
      if (!result) {
        tp match {
          case st: SubType =>
            traverse(st.supertype)
          case TypeRef(pre, sym, args) =>
            if (sym == ArrayClass) args foreach traverse
            else if (sym.isTypeParameterOrSkolem || sym.isExistentiallyBound || !args.isEmpty) result = true
            else if (sym.isClass) traverse(rebindInnerClass(pre, sym)) // #2585
            else if (!sym.isTopLevel) traverse(pre)
          case PolyType(_, _) | ExistentialType(_, _) =>
            result = true
          case RefinedType(parents, _) =>
            parents foreach traverse
          case ClassInfoType(parents, _, _) =>
            parents foreach traverse
          case AnnotatedType(_, atp) =>
            traverse(atp)
          case _ =>
            mapOver(tp)
        }
      }
    }
  }

  override protected def verifyJavaErasure = settings.Xverify || settings.debug
  def needsJavaSig(tp: Type) = !settings.Ynogenericsig && NeedsSigCollector.collect(tp)

  // only refer to type params that will actually make it into the sig, this excludes:
  // * higher-order type parameters
  // * type parameters appearing in method parameters
  // * type members not visible in an enclosing template
  private def isTypeParameterInSig(sym: Symbol, initialSymbol: Symbol) = (
    !sym.isHigherOrderTypeParameter &&
    sym.isTypeParameterOrSkolem && (
      (initialSymbol.enclClassChain.exists(sym isNestedIn _)) ||
      (initialSymbol.isMethod && initialSymbol.typeParams.contains(sym))
    )
  )

  // Ensure every '.' in the generated signature immediately follows
  // a close angle bracket '>'.  Any which do not are replaced with '$'.
  // This arises due to multiply nested classes in the face of the
  // rewriting explained at rebindInnerClass.   This should be done in a
  // more rigorous way up front rather than catching it after the fact,
  // but that will be more involved.
  private def dotCleanup(sig: String): String = {
    // OPT 50% of time in generic signatures (~1% of compile time) was in this method, hence the imperative rewrite.
    var last: Char = '\u0000'
    var i = 0
    val len = sig.length
    val copy: Array[Char] = sig.toCharArray
    var changed = false
    while (i < sig.length) {
      val ch = copy(i)
      if (ch == '.' && last != '>') {
         copy(i) = '$'
         changed = true
      }
      last = ch
      i += 1
    }
    if (changed) new String(copy) else sig
  }

  /** This object is only used for sanity testing when -check:genjvm is set.
   *  In that case we make sure that the erasure of the `normalized` type
   *  is the same as the erased type that's generated. Normalization means
   *  unboxing some primitive types and further simplifications as they are done in jsig.
   */
  val prepareSigMap = new TypeMap {
    def squashBoxed(tp: Type): Type = tp.dealiasWiden match {
      case t @ RefinedType(parents, decls) =>
        val parents1 = parents mapConserve squashBoxed
        if (parents1 eq parents) tp
        else RefinedType(parents1, decls)
      case t @ ExistentialType(tparams, tpe) =>
        val tpe1 = squashBoxed(tpe)
        if (tpe1 eq tpe) t
        else ExistentialType(tparams, tpe1)
      case t =>
        if (boxedClass contains t.typeSymbol) ObjectTpe
        else tp
    }
    def apply(tp: Type): Type = tp.dealiasWiden match {
      case tp1 @ TypeBounds(lo, hi) =>
        val lo1 = squashBoxed(apply(lo))
        val hi1 = squashBoxed(apply(hi))
        if ((lo1 eq lo) && (hi1 eq hi)) tp1
        else TypeBounds(lo1, hi1)
      case tp1 @ TypeRef(pre, sym, args) =>
        def argApply(tp: Type) = {
          val tp1 = apply(tp)
          if (tp1.typeSymbol == UnitClass) ObjectTpe
          else squashBoxed(tp1)
        }
        if (sym == ArrayClass && args.nonEmpty)
          if (unboundedGenericArrayLevel(tp1) == 1) ObjectTpe
          else mapOver(tp1)
        else if (sym == AnyClass || sym == AnyValClass || sym == SingletonClass)
          ObjectTpe
        else if (sym == UnitClass)
          BoxedUnitTpe
        else if (sym == NothingClass)
          RuntimeNothingClass.tpe
        else if (sym == NullClass)
          RuntimeNullClass.tpe
        else {
          val pre1 = apply(pre)
          val args1 = args mapConserve argApply
          if ((pre1 eq pre) && (args1 eq args)) tp1
          else TypeRef(pre1, sym, args1)
        }
      case tp1 @ MethodType(params, restpe) =>
        val params1 = mapOver(params)
        val restpe1 = if (restpe.typeSymbol == UnitClass) UnitTpe else apply(restpe)
        if ((params1 eq params) && (restpe1 eq restpe)) tp1
        else MethodType(params1, restpe1)
      case tp1 @ RefinedType(parents, decls) =>
        val parents1 = parents mapConserve apply
        if (parents1 eq parents) tp1
        else RefinedType(parents1, decls)
      case t @ ExistentialType(tparams, tpe) =>
        val tpe1 = apply(tpe)
        if (tpe1 eq tpe) t
        else ExistentialType(tparams, tpe1)
      case tp1: ClassInfoType =>
        tp1
      case tp1 =>
        mapOver(tp1)
    }
  }

  private def hiBounds(bounds: TypeBounds): List[Type] = bounds.hi.dealiasWiden match {
    case RefinedType(parents, _) => parents map (_.dealiasWiden)
    case tp                      => tp :: Nil
  }

  private def isErasedValueType(tpe: Type) = tpe.isInstanceOf[ErasedValueType]

  /** The Java signature of type 'info', for symbol sym. The symbol is used to give the right return
   *  type for constructors.
   */
  def javaSig(sym0: Symbol, info: Type): Option[String] = enteringErasure {
    val isTraitSignature = sym0.enclClass.isTrait

    def superSig(parents: List[Type]) = {
      val ps = (
        if (isTraitSignature) {
          // java is unthrilled about seeing interfaces inherit from classes
          val ok = parents filter (p => p.typeSymbol.isTrait || p.typeSymbol.isInterface)
          // traits should always list Object.
          if (ok.isEmpty || ok.head.typeSymbol != ObjectClass) ObjectTpe :: ok
          else ok
        }
        else parents
      )
      (ps map boxedSig).mkString
    }
    def boxedSig(tp: Type) = jsig(tp, primitiveOK = false)
    def boundsSig(bounds: List[Type]) = {
      val (isTrait, isClass) = bounds partition (_.typeSymbol.isTrait)
      val classPart = isClass match {
        case Nil    => ":" // + boxedSig(ObjectTpe)
        case x :: _ => ":" + boxedSig(x)
      }
      classPart :: (isTrait map boxedSig) mkString ":"
    }
    def paramSig(tsym: Symbol) = tsym.name + boundsSig(hiBounds(tsym.info.bounds))
    def polyParamSig(tparams: List[Symbol]) = (
      if (tparams.isEmpty) ""
      else tparams map paramSig mkString ("<", "", ">")
    )

    // Anything which could conceivably be a module (i.e. isn't known to be
    // a type parameter or similar) must go through here or the signature is
    // likely to end up with Foo<T>.Empty where it needs Foo<T>.Empty$.
    def fullNameInSig(sym: Symbol) = "L" + enteringIcode(sym.javaBinaryName)

    def jsig(tp0: Type, existentiallyBound: List[Symbol] = Nil, toplevel: Boolean = false, primitiveOK: Boolean = true): String = {
      val tp = tp0.dealias
      tp match {
        case st: SubType =>
          jsig(st.supertype, existentiallyBound, toplevel, primitiveOK)
        case ExistentialType(tparams, tpe) =>
          jsig(tpe, tparams, toplevel, primitiveOK)
        case TypeRef(pre, sym, args) =>
          def argSig(tp: Type) =
            if (existentiallyBound contains tp.typeSymbol) {
              val bounds = tp.typeSymbol.info.bounds
              if (!(AnyRefTpe <:< bounds.hi)) "+" + boxedSig(bounds.hi)
              else if (!(bounds.lo <:< NullTpe)) "-" + boxedSig(bounds.lo)
              else "*"
            } else tp match {
              case PolyType(_, res) =>
                "*" // SI-7932
              case _ =>
                boxedSig(tp)
            }
          def classSig = {
            val preRebound = pre.baseType(sym.owner) // #2585
            dotCleanup(
              (
                if (needsJavaSig(preRebound)) {
                  val s = jsig(preRebound, existentiallyBound)
                  if (s.charAt(0) == 'L') s.substring(0, s.length - 1) + "." + sym.javaSimpleName
                  else fullNameInSig(sym)
                }
                else fullNameInSig(sym)
              ) + (
                if (args.isEmpty) "" else
                "<"+(args map argSig).mkString+">"
              ) + (
                ";"
              )
            )
          }

          // If args isEmpty, Array is being used as a type constructor
          if (sym == ArrayClass && args.nonEmpty) {
            if (unboundedGenericArrayLevel(tp) == 1) jsig(ObjectTpe)
            else ARRAY_TAG.toString+(args map (jsig(_))).mkString
          }
          else if (isTypeParameterInSig(sym, sym0)) {
            assert(!sym.isAliasType, "Unexpected alias type: " + sym)
            "" + TVAR_TAG + sym.name + ";"
          }
          else if (sym == AnyClass || sym == AnyValClass || sym == SingletonClass)
            jsig(ObjectTpe)
          else if (sym == UnitClass)
            jsig(BoxedUnitTpe)
          else if (sym == NothingClass)
            jsig(RuntimeNothingClass.tpe)
          else if (sym == NullClass)
            jsig(RuntimeNullClass.tpe)
          else if (isPrimitiveValueClass(sym)) {
            if (!primitiveOK) jsig(ObjectTpe)
            else if (sym == UnitClass) jsig(BoxedUnitTpe)
            else abbrvTag(sym).toString
          }
          else if (sym.isDerivedValueClass) {
            val unboxed     = sym.derivedValueClassUnbox.tpe_*.finalResultType
            val unboxedSeen = (tp memberType sym.derivedValueClassUnbox).finalResultType
            def unboxedMsg  = if (unboxed == unboxedSeen) "" else s", seen within ${sym.simpleName} as $unboxedSeen"
            logResult(s"Erasure of value class $sym (underlying type $unboxed$unboxedMsg) is") {
              if (isPrimitiveValueType(unboxedSeen) && !primitiveOK)
                classSig
              else
                jsig(unboxedSeen, existentiallyBound, toplevel, primitiveOK)
            }
          }
          else if (sym.isClass)
            classSig
          else
            jsig(erasure(sym0)(tp), existentiallyBound, toplevel, primitiveOK)
        case PolyType(tparams, restpe) =>
          assert(tparams.nonEmpty)
          val poly = if (toplevel) polyParamSig(tparams) else ""
          poly + jsig(restpe)

        case MethodType(params, restpe) =>
          val buf = new StringBuffer("(")
          params foreach (p => buf append jsig(p.tpe))
          buf append ")"
          buf append (if (restpe.typeSymbol == UnitClass || sym0.isConstructor) VOID_TAG.toString else jsig(restpe))
          buf.toString

        case RefinedType(parent :: _, decls) =>
          boxedSig(parent)
        case ClassInfoType(parents, _, _) =>
          superSig(parents)
        case AnnotatedType(_, atp) =>
          jsig(atp, existentiallyBound, toplevel, primitiveOK)
        case BoundedWildcardType(bounds) =>
          println("something's wrong: "+sym0+":"+sym0.tpe+" has a bounded wildcard type")
          jsig(bounds.hi, existentiallyBound, toplevel, primitiveOK)
        case _ =>
          val etp = erasure(sym0)(tp)
          if (etp eq tp) throw new UnknownSig
          else jsig(etp)
      }
    }
    if (needsJavaSig(info)) {
      try Some(jsig(info, toplevel = true))
      catch { case ex: UnknownSig => None }
    }
    else None
  }

  class UnknownSig extends Exception

  /**  The symbol's erased info. This is the type's erasure, except for the following symbols:
   *
   *   - For $asInstanceOf      : [T]T
   *   - For $isInstanceOf      : [T]scala#Boolean
   *   - For class Array        : [T]C where C is the erased classinfo of the Array class.
   *   - For Array[T].<init>    : {scala#Int)Array[T]
   *   - For a type parameter   : A type bounds type consisting of the erasures of its bounds.
   */
  override def transformInfo(sym: Symbol, tp: Type): Type =
    transformMixinInfo(super.transformInfo(sym, tp))

  val deconstMap = new TypeMap {
    // For some reason classOf[Foo] creates ConstantType(Constant(tpe)) with an actual Type for tpe,
    // which is later translated to a Class. Unfortunately that means we have bugs like the erasure
    // of Class[Foo] and classOf[Bar] not being seen as equivalent, leading to duplicate method
    // generation and failing bytecode. See ticket #4753.
    def apply(tp: Type): Type = tp match {
      case PolyType(_, _)                  => mapOver(tp)
      case MethodType(_, _)                => mapOver(tp)     // nullarymethod was eliminated during uncurry
      case ConstantType(Constant(_: Type)) => ClassClass.tpe  // all classOfs erase to Class
      case _                               => tp.deconst
    }
  }

  // ## requires a little translation
  private lazy val poundPoundMethods = Set[Symbol](Any_##, Object_##)
  // Methods on Any/Object which we rewrite here while we still know what
  // is a primitive and what arrived boxed.
  private lazy val interceptedMethods = poundPoundMethods ++ primitiveGetClassMethods

// -------- erasure on trees ------------------------------------------

  override def newTyper(context: Context) = new Eraser(context)

  class ComputeBridges(unit: CompilationUnit, root: Symbol) {
    assert(phase == currentRun.erasurePhase, phase)

    var toBeRemoved  = immutable.Set[Symbol]()
    val site         = root.thisType
    val bridgesScope = newScope
    val bridgeTarget = mutable.HashMap[Symbol, Symbol]()
    var bridges      = List[Tree]()

    val opc = enteringExplicitOuter {
      new overridingPairs.Cursor(root) {
        override def parents              = List(root.info.firstParent)
        override def exclude(sym: Symbol) = !sym.isMethod || super.exclude(sym)
      }
    }

    def compute(): (List[Tree], immutable.Set[Symbol]) = {
      while (opc.hasNext) {
        if (enteringExplicitOuter(!opc.low.isDeferred))
          checkPair(opc.currentPair)

        opc.next()
      }
      (bridges, toBeRemoved)
    }

    /** Check that a bridge only overrides members that are also overridden by the original member.
     *  This test is necessary only for members that have a value class in their type.
     *  Such members are special because their types after erasure and after post-erasure differ/.
     *  This means we generate them after erasure, but the post-erasure transform might introduce
     *  a name clash. The present method guards against these name clashes.
     *
     *  @param  member   The original member
     *  @param  other    The overidden symbol for which the bridge was generated
     *  @param  bridge   The bridge
     */
    def checkBridgeOverrides(member: Symbol, other: Symbol, bridge: Symbol): Seq[(Position, String)] = {
      def fulldef(sym: Symbol) =
        if (sym == NoSymbol) sym.toString
        else s"$sym: ${sym.tpe} in ${sym.owner}"
      var noclash = true
      val clashErrors = mutable.Buffer[(Position, String)]()
      def clashError(what: String) = {
        val pos = if (member.owner == root) member.pos else root.pos
        val msg = sm"""bridge generated for member ${fulldef(member)}
                      |which overrides ${fulldef(other)}
                      |clashes with definition of $what;
                      |both have erased type ${exitingPostErasure(bridge.tpe)}"""
        clashErrors += Tuple2(pos, msg)
      }
      for (bc <- root.baseClasses) {
        if (settings.debug)
          exitingPostErasure(println(
            sm"""check bridge overrides in $bc
                |${bc.info.nonPrivateDecl(bridge.name)}
                |${site.memberType(bridge)}
                |${site.memberType(bc.info.nonPrivateDecl(bridge.name) orElse IntClass)}
                |${(bridge.matchingSymbol(bc, site))}"""))

        def overriddenBy(sym: Symbol) =
          sym.matchingSymbol(bc, site).alternatives filter (sym => !sym.isBridge)
        for (overBridge <- exitingPostErasure(overriddenBy(bridge))) {
          if (overBridge == member) {
            clashError("the member itself")
          } else {
            val overMembers = overriddenBy(member)
            if (!overMembers.exists(overMember =>
              exitingPostErasure(overMember.tpe =:= overBridge.tpe))) {
              clashError(fulldef(overBridge))
            }
          }
        }
      }
      clashErrors
    }

    /** TODO - work through this logic with a fine-toothed comb, incorporating
     *  into SymbolPairs where appropriate.
     */
    def checkPair(pair: SymbolPair) {
      import pair._
      val member = low
      val other  = high
      val otpe   = highErased

      val bridgeNeeded = exitingErasure (
        !member.isMacro &&
        !(other.tpe =:= member.tpe) &&
        !(deconstMap(other.tpe) =:= deconstMap(member.tpe)) &&
        { var e = bridgesScope.lookupEntry(member.name)
          while ((e ne null) && !((e.sym.tpe =:= otpe) && (bridgeTarget(e.sym) == member)))
            e = bridgesScope.lookupNextEntry(e)
          (e eq null)
        }
      )
      if (!bridgeNeeded)
        return

      val newFlags = (member.flags | BRIDGE | ARTIFACT) & ~(ACCESSOR | DEFERRED | LAZY | lateDEFERRED)
      val bridge   = other.cloneSymbolImpl(root, newFlags) setPos root.pos

      debuglog("generating bridge from %s (%s): %s to %s: %s".format(
        other, flagsToString(newFlags),
        otpe + other.locationString, member,
        specialErasure(root)(member.tpe) + member.locationString)
      )

      // the parameter symbols need to have the new owner
      bridge setInfo (otpe cloneInfo bridge)
      bridgeTarget(bridge) = member

      def sigContainsValueClass = (member.tpe exists (_.typeSymbol.isDerivedValueClass))

      val shouldAdd = (
            !sigContainsValueClass
        ||  (checkBridgeOverrides(member, other, bridge) match {
              case Nil => true
              case es if member.owner.isAnonymousClass => resolveAnonymousBridgeClash(member, bridge); true
              case es => for ((pos, msg) <- es) unit.error(pos, msg); false
            })
      )

      if (shouldAdd) {
        exitingErasure(root.info.decls enter bridge)
        if (other.owner == root) {
          exitingErasure(root.info.decls.unlink(other))
          toBeRemoved += other
        }

        bridgesScope enter bridge
        bridges ::= makeBridgeDefDef(bridge, member, other)
      }
    }

    def makeBridgeDefDef(bridge: Symbol, member: Symbol, other: Symbol) = exitingErasure {
      // type checking ensures we can safely call `other`, but unless `member.tpe <:< other.tpe`,
      // calling `member` is not guaranteed to succeed in general, there's
      // nothing we can do about this, except for an unapply: when this subtype test fails,
      // return None without calling `member`
      //
      // TODO: should we do this for user-defined unapplies as well?
      // does the first argument list have exactly one argument -- for user-defined unapplies we can't be sure
      def maybeWrap(bridgingCall: Tree): Tree = {
        val guardExtractor = ( // can't statically know which member is going to be selected, so don't let this depend on member.isSynthetic
             (member.name == nme.unapply || member.name == nme.unapplySeq)
          && !exitingErasure((member.tpe <:< other.tpe))) // no static guarantees (TODO: is the subtype test ever true?)

        import CODE._
        val _false    = FALSE
        val pt        = member.tpe.resultType
        lazy val zero =
          if      (_false.tpe <:< pt)    _false
          else if (NoneModule.tpe <:< pt) REF(NoneModule)
          else EmptyTree

        if (guardExtractor && (zero ne EmptyTree)) {
          val typeTest = gen.mkIsInstanceOf(REF(bridge.firstParam), member.tpe.params.head.tpe)
          IF (typeTest) THEN bridgingCall ELSE zero
        } else bridgingCall
      }
      val rhs = member.tpe match {
        case MethodType(Nil, ConstantType(c)) => Literal(c)
        case _                                =>
          val sel: Tree    = Select(This(root), member)
          val bridgingCall = (sel /: bridge.paramss)((fun, vparams) => Apply(fun, vparams map Ident))

          maybeWrap(bridgingCall)
      }
      DefDef(bridge, rhs)
    }
  }

  /** The modifier typer which retypes with erased types. */
  class Eraser(_context: Context) extends Typer(_context) with TypeAdapter {
    val typer = this.asInstanceOf[analyzer.Typer]

    override protected def stabilize(tree: Tree, pre: Type, mode: Mode, pt: Type): Tree = tree

    /**  Replace member references as follows:
     *
     *   - `x == y` for == in class Any becomes `x equals y` with equals in class Object.
     *   - `x != y` for != in class Any becomes `!(x equals y)` with equals in class Object.
     *   - x.asInstanceOf[T] becomes x.$asInstanceOf[T]
     *   - x.isInstanceOf[T] becomes x.$isInstanceOf[T]
     *   - x.isInstanceOf[ErasedValueType(tref)] becomes x.isInstanceOf[tref.sym.tpe]
     *   - x.m where m is some other member of Any becomes x.m where m is a member of class Object.
     *   - x.m where x has unboxed value type T and m is not a directly translated member of T becomes T.box(x).m
     *   - x.m where x is a reference type and m is a directly translated member of value type T becomes x.TValue().m
     *   - All forms of x.m where x is a boxed type and m is a member of an unboxed class become
     *     x.m where m is the corresponding member of the boxed class.
     */
    private def adaptMember(tree: Tree): Tree = {
      //Console.println("adaptMember: " + tree);
      tree match {
        case Apply(ta @ TypeApply(sel @ Select(qual, name), List(targ)), List())
        if tree.symbol == Any_asInstanceOf =>
          val qual1 = typedQualifier(qual, NOmode, ObjectTpe) // need to have an expected type, see #3037
          // !!! Make pending/run/t5866b.scala work. The fix might be here and/or in unbox1.
          if (isPrimitiveValueType(targ.tpe) || isErasedValueType(targ.tpe)) {
            val noNullCheckNeeded = targ.tpe match {
              case ErasedValueType(_, underlying) =>
                isPrimitiveValueClass(underlying.typeSymbol)
              case _ =>
                true
            }
            if (noNullCheckNeeded) unbox(qual1, targ.tpe)
            else {
              val untyped =
//                util.trace("new asinstanceof test") {
                  gen.evalOnce(qual1, context.owner, context.unit) { qual =>
                    If(Apply(Select(qual(), nme.eq), List(Literal(Constant(null)) setType NullTpe)),
                       Literal(Constant(null)) setType targ.tpe,
                       unbox(qual(), targ.tpe))
                  }
//                }
              typed(untyped)
            }
          } else treeCopy.Apply(tree, treeCopy.TypeApply(ta, treeCopy.Select(sel, qual1, name), List(targ)), List())

        case Apply(TypeApply(sel @ Select(qual, name), List(targ)), List())
        if tree.symbol == Any_isInstanceOf =>
          targ.tpe match {
            case ErasedValueType(clazz, _) => targ.setType(clazz.tpe)
            case _ =>
          }
            tree
        case Select(qual, name) =>
          if (tree.symbol == NoSymbol) {
            tree
          } else if (name == nme.CONSTRUCTOR) {
            if (tree.symbol.owner == AnyValClass) tree.symbol = ObjectClass.primaryConstructor
            tree
          } else if (tree.symbol == Any_asInstanceOf)
            adaptMember(atPos(tree.pos)(Select(qual, Object_asInstanceOf)))
          else if (tree.symbol == Any_isInstanceOf)
            adaptMember(atPos(tree.pos)(Select(qual, Object_isInstanceOf)))
          else if (tree.symbol.owner == AnyClass)
            adaptMember(atPos(tree.pos)(Select(qual, getMember(ObjectClass, tree.symbol.name))))
          else {
            var qual1 = typedQualifier(qual)
            if ((isPrimitiveValueType(qual1.tpe) && !isPrimitiveValueMember(tree.symbol)) ||
                 isErasedValueType(qual1.tpe))
              qual1 = box(qual1, "owner "+tree.symbol.owner)
            else if (!isPrimitiveValueType(qual1.tpe) && isPrimitiveValueMember(tree.symbol))
              qual1 = unbox(qual1, tree.symbol.owner.tpe)

            def selectFrom(qual: Tree) = treeCopy.Select(tree, qual, name)

            if (isPrimitiveValueMember(tree.symbol) && !isPrimitiveValueType(qual1.tpe)) {
              tree.symbol = NoSymbol
              selectFrom(qual1)
            } else if (isMethodTypeWithEmptyParams(qual1.tpe)) {
              assert(qual1.symbol.isStable, qual1.symbol)
              val applied = Apply(qual1, List()) setPos qual1.pos setType qual1.tpe.resultType
              adaptMember(selectFrom(applied))
            } else if (!(qual1.isInstanceOf[Super] || (qual1.tpe.typeSymbol isSubClass tree.symbol.owner))) {
              assert(tree.symbol.owner != ArrayClass)
              selectFrom(cast(qual1, tree.symbol.owner.tpe))
            } else {
              selectFrom(qual1)
            }
          }
        case SelectFromArray(qual, name, erasure) =>
          var qual1 = typedQualifier(qual)
          if (!(qual1.tpe <:< erasure)) qual1 = cast(qual1, erasure)
          Select(qual1, name) copyAttrs tree
        case _ =>
          tree
      }
    }

    /** A replacement for the standard typer's adapt method.
     */
    override protected def adapt(tree: Tree, mode: Mode, pt: Type, original: Tree = EmptyTree): Tree =
      adaptToType(tree, pt)

    /** A replacement for the standard typer's `typed1` method.
     */
    override def typed1(tree: Tree, mode: Mode, pt: Type): Tree = {
      val tree1 = try {
        tree match {
          case InjectDerivedValue(arg) =>
            (tree.attachments.get[TypeRefAttachment]: @unchecked) match {
              case Some(itype) =>
                val tref = itype.tpe
                val argPt = enteringErasure(erasedValueClassArg(tref))
                log(s"transforming inject $arg -> $tref/$argPt")
                val result = typed(arg, mode, argPt)
                log(s"transformed inject $arg -> $tref/$argPt = $result:${result.tpe}")
                return result setType ErasedValueType(tref.sym, result.tpe)

            }
          case _ =>
            super.typed1(adaptMember(tree), mode, pt)
        }
      } catch {
        case er: TypeError =>
          Console.println("exception when typing " + tree+"/"+tree.getClass)
          Console.println(er.msg + " in file " + context.owner.sourceFile)
          er.printStackTrace
          abort("unrecoverable error")
        case ex: Exception =>
          //if (settings.debug.value)
          try Console.println("exception when typing " + tree)
          finally throw ex
          throw ex
      }

      def adaptCase(cdef: CaseDef): CaseDef = {
        val newCdef = deriveCaseDef(cdef)(adaptToType(_, tree1.tpe))
        newCdef setType newCdef.body.tpe
      }
      def adaptBranch(branch: Tree): Tree =
        if (branch == EmptyTree) branch else adaptToType(branch, tree1.tpe)

      tree1 match {
        case If(cond, thenp, elsep) =>
          treeCopy.If(tree1, cond, adaptBranch(thenp), adaptBranch(elsep))
        case Match(selector, cases) =>
          treeCopy.Match(tree1, selector, cases map adaptCase)
        case Try(block, catches, finalizer) =>
          treeCopy.Try(tree1, adaptBranch(block), catches map adaptCase, finalizer)
        case Ident(_) | Select(_, _) =>
          if (tree1.symbol.isOverloaded) {
            val first = tree1.symbol.alternatives.head
            val sym1 = tree1.symbol.filter {
              alt => alt == first || !(first.tpe looselyMatches alt.tpe)
            }
            if (tree.symbol ne sym1) {
              tree1 setSymbol sym1 setType sym1.tpe
            }
          }
          tree1
        case _ =>
          tree1
      }
    }
  }

  /** The erasure transformer */
  class ErasureTransformer(unit: CompilationUnit) extends Transformer {
    import overridingPairs.Cursor

    private def doubleDefError(pair: SymbolPair) {
      import pair._

      if (!pair.isErroneous) {
        val what = (
          if (low.owner == high.owner) "double definition"
          else if (low.owner == base) "name clash between defined and inherited member"
          else "name clash between inherited members"
        )
        val when = if (exitingRefchecks(lowType matches highType)) "" else " after erasure: " + exitingPostErasure(highType)

        unit.error(pos,
          s"""|$what:
              |${exitingRefchecks(highString)} and
              |${exitingRefchecks(lowString)}
              |have same type$when""".trim.stripMargin
        )
      }
      low setInfo ErrorType
    }

    private def sameTypeAfterErasure(sym1: Symbol, sym2: Symbol) =
      exitingPostErasure(sym1.info =:= sym2.info) && !sym1.isMacro && !sym2.isMacro

    /** TODO - adapt SymbolPairs so it can be used here. */
    private def checkNoDeclaredDoubleDefs(base: Symbol) {
      val decls = base.info.decls

      // SI-8010 force infos, otherwise makeNotPrivate in ExplicitOuter info transformer can trigger
      //         a scope rehash while were iterating and we can see the same entry twice!
      //         Inspection of SymbolPairs (the basis of OverridingPairs), suggests that it is immune
      //         from this sort of bug as it copies the symbols into a temporary scope *before* any calls to `.info`,
      //         ie, no variant of it calls `info` or `tpe` in `SymbolPair#exclude`.
      //
      //         Why not just create a temporary scope here? We need to force the name changes in any case before
      //         we do these checks, so that we're comparing same-named methods based on the expanded names that actually
      //         end up in the bytecode.
      exitingPostErasure(decls.foreach(_.info))

      var e = decls.elems
      while (e ne null) {
        if (e.sym.isTerm) {
          var e1 = decls lookupNextEntry e
          while (e1 ne null) {
            assert(e.sym ne e1.sym, s"Internal error: encountered ${e.sym.debugLocationString} twice during scope traversal. This might be related to SI-8010.")
            if (sameTypeAfterErasure(e.sym, e1.sym))
              doubleDefError(new SymbolPair(base, e.sym, e1.sym))

            e1 = decls lookupNextEntry e1
          }
        }
        e = e.next
      }
    }

    /** Emit an error if there is a double definition. This can happen if:
     *
     *  - A template defines two members with the same name and erased type.
     *  - A template defines and inherits two members `m` with different types,
     *    but their erased types are the same.
     *  - A template inherits two members `m` with different types,
     *    but their erased types are the same.
     */
    private def checkNoDoubleDefs(root: Symbol) {
      checkNoDeclaredDoubleDefs(root)
      object opc extends Cursor(root) {
        // specialized members have no type history before 'specialize', causing double def errors for curried defs
        override def exclude(sym: Symbol): Boolean = (
             sym.isType
          || sym.isPrivate
          || super.exclude(sym)
          || !sym.hasTypeAt(currentRun.refchecksPhase.id)
        )
        override def matches(lo: Symbol, high: Symbol) = true
      }
      def isErasureDoubleDef(pair: SymbolPair) = {
        import pair._
        log(s"Considering for erasure clash:\n$pair")
        !exitingRefchecks(lowType matches highType) && sameTypeAfterErasure(low, high)
      }
      opc.iterator filter isErasureDoubleDef foreach doubleDefError
    }

    /**  Add bridge definitions to a template. This means:
     *
     *   If there is a concrete member `m` which overrides a member in a base
     *   class of the template, and the erased types of the two members differ,
     *   and the two members are not inherited or defined by some parent class
     *   of the template, then a bridge from the overridden member `m1` to the
     *   member `m0` is added. The bridge has the erased type of `m1` and
     *   forwards to `m0`.
     *
     *   No bridge is added if there is already a bridge to `m0` with the erased
     *   type of `m1` in the template.
     */
    private def bridgeDefs(owner: Symbol): (List[Tree], immutable.Set[Symbol]) = {
      assert(phase == currentRun.erasurePhase, phase)
      new ComputeBridges(unit, owner) compute()
    }

    def addBridges(stats: List[Tree], base: Symbol): List[Tree] =
      if (base.isTrait) stats
      else {
        val (bridges, toBeRemoved) = bridgeDefs(base)
        if (bridges.isEmpty) stats
        else (stats filterNot (stat => toBeRemoved contains stat.symbol)) ::: bridges
      }

    /**  Transform tree at phase erasure before retyping it.
     *   This entails the following:
     *
     *   - Remove all type parameters in class and method definitions.
     *   - Remove all abstract and alias type definitions.
     *   - Remove all type applications other than those involving a type test or cast.
     *   - Remove all empty trees in statements and definitions in a PackageDef.
     *   - Check that there are no double definitions in a template.
     *   - Add bridge definitions to a template.
     *   - Replace all types in type nodes and the EmptyTree object by their erasure.
     *     Type nodes of type Unit representing result types of methods are left alone.
     *   - Given a selection q.s, where the owner of `s` is not accessible but the
     *     type symbol of q's type qT is accessible, insert a cast (q.asInstanceOf[qT]).s
     *     This prevents illegal access errors (see #4283).
     *   - Remove all instance creations new C(arg) where C is an inlined class.
     *   - Reset all other type attributes to null, thus enforcing a retyping.
     */
    private val preTransformer = new TypingTransformer(unit) {

      private def preEraseNormalApply(tree: Apply) = {
        val fn = tree.fun
        val args = tree.args

        def qualifier = fn match {
          case Select(qual, _) => qual
          case TypeApply(Select(qual, _), _) => qual
        }
        def preEraseAsInstanceOf = {
          (fn: @unchecked) match {
            case TypeApply(Select(qual, _), List(targ)) =>
              if (qual.tpe <:< targ.tpe)
                atPos(tree.pos) { Typed(qual, TypeTree(targ.tpe)) }
              else if (isNumericValueClass(qual.tpe.typeSymbol) && isNumericValueClass(targ.tpe.typeSymbol))
                atPos(tree.pos)(numericConversion(qual, targ.tpe.typeSymbol))
              else
                tree
          }
          // todo: also handle the case where the singleton type is buried in a compound
        }

        def preEraseIsInstanceOf = {
          fn match {
            case TypeApply(sel @ Select(qual, name), List(targ)) =>
              if (qual.tpe != null && isPrimitiveValueClass(qual.tpe.typeSymbol) && targ.tpe != null && targ.tpe <:< AnyRefTpe)
                unit.error(sel.pos, "isInstanceOf cannot test if value types are references.")

              def mkIsInstanceOf(q: () => Tree)(tp: Type): Tree =
                Apply(
                  TypeApply(
                    Select(q(), Object_isInstanceOf) setPos sel.pos,
                    List(TypeTree(tp) setPos targ.pos)) setPos fn.pos,
                  List()) setPos tree.pos
              targ.tpe match {
                case SingleType(_, _) | ThisType(_) | SuperType(_, _) =>
                  val cmpOp = if (targ.tpe <:< AnyValTpe) Any_equals else Object_eq
                  atPos(tree.pos) {
                    Apply(Select(qual, cmpOp), List(gen.mkAttributedQualifier(targ.tpe)))
                  }
                case RefinedType(parents, decls) if (parents.length >= 2) =>
                  gen.evalOnce(qual, currentOwner, unit) { q =>
                    // Optimization: don't generate isInstanceOf tests if the static type
                    // conforms, because it always succeeds.  (Or at least it had better.)
                    // At this writing the pattern matcher generates some instance tests
                    // involving intersections where at least one parent is statically known true.
                    // That needs fixing, but filtering the parents here adds an additional
                    // level of robustness (in addition to the short term fix.)
                    val parentTests = parents filterNot (qual.tpe <:< _)

                    if (parentTests.isEmpty) Literal(Constant(true))
                    else atPos(tree.pos) {
                      parentTests map mkIsInstanceOf(q) reduceRight gen.mkAnd
                    }
                  }
                case _ =>
                  tree
              }
            case _ => tree
          }
        }

        if (fn.symbol == Any_asInstanceOf) {
          preEraseAsInstanceOf
        } else if (fn.symbol == Any_isInstanceOf) {
          preEraseIsInstanceOf
        } else if (fn.symbol.isOnlyRefinementMember) {
          // !!! Another spot where we produce overloaded types (see test pos/t6301)
          log(s"${fn.symbol.fullLocationString} originates in refinement class - call will be implemented via reflection.")
          ApplyDynamic(qualifier, args) setSymbol fn.symbol setPos tree.pos
        } else if (fn.symbol.isMethodWithExtension && !fn.symbol.tpe.isErroneous) {
          Apply(gen.mkAttributedRef(extensionMethods.extensionMethod(fn.symbol)), qualifier :: args)
        } else {
          tree
        }
      }

      private def preEraseApply(tree: Apply) = {
        tree.fun match {
          case TypeApply(fun @ Select(qual, name), args @ List(arg))
          if ((fun.symbol == Any_isInstanceOf || fun.symbol == Object_isInstanceOf) &&
              unboundedGenericArrayLevel(arg.tpe) > 0) => // !!! todo: simplify by having GenericArray also extract trees
            val level = unboundedGenericArrayLevel(arg.tpe)
            def isArrayTest(arg: Tree) =
              gen.mkRuntimeCall(nme.isArray, List(arg, Literal(Constant(level))))

            global.typer.typedPos(tree.pos) {
              if (level == 1) isArrayTest(qual)
              else gen.evalOnce(qual, currentOwner, unit) { qual1 =>
                gen.mkAnd(
                  gen.mkMethodCall(
                    qual1(),
                    fun.symbol,
                    List(specialErasure(fun.symbol)(arg.tpe)),
                    Nil
                  ),
                  isArrayTest(qual1())
                )
              }
            }
          case fn @ Select(qual, name) =>
            val args = tree.args
            if (fn.symbol.owner == ArrayClass) {
              // Have to also catch calls to abstract types which are bounded by Array.
              if (unboundedGenericArrayLevel(qual.tpe.widen) == 1 || qual.tpe.typeSymbol.isAbstractType) {
                // convert calls to apply/update/length on generic arrays to
                // calls of ScalaRunTime.array_xxx method calls
                global.typer.typedPos(tree.pos) {
                  val arrayMethodName = name match {
                    case nme.apply  => nme.array_apply
                    case nme.length => nme.array_length
                    case nme.update => nme.array_update
                    case nme.clone_ => nme.array_clone
                    case _          => unit.error(tree.pos, "Unexpected array member, no translation exists.") ; nme.NO_NAME
                  }
                  gen.mkRuntimeCall(arrayMethodName, qual :: args)
                }
              } else {
                // store exact array erasure in map to be retrieved later when we might
                // need to do the cast in adaptMember
                // Note: No specialErasure needed here because we simply cast, on
                // elimination of SelectFromArray, no boxing or unboxing is done there.
                treeCopy.Apply(
                  tree,
                  SelectFromArray(qual, name, erasure(tree.symbol)(qual.tpe)).copyAttrs(fn),
                  args)
              }
            }
            else if (args.isEmpty && interceptedMethods(fn.symbol)) {
              if (poundPoundMethods.contains(fn.symbol)) {
                // This is unattractive, but without it we crash here on ().## because after
                // erasure the ScalaRunTime.hash overload goes from Unit => Int to BoxedUnit => Int.
                // This must be because some earlier transformation is being skipped on ##, but so
                // far I don't know what.  For null we now define null.## == 0.
                qual.tpe.typeSymbol match {
                  case UnitClass | NullClass                    => LIT(0)
                  case IntClass                                 => qual
                  case s @ (ShortClass | ByteClass | CharClass) => numericConversion(qual, s)
                  case BooleanClass                             => If(qual, LIT(true.##), LIT(false.##))
                  case _                                        =>
                    // Since we are past typer, we need to avoid creating trees carrying
                    // overloaded types.  This logic is custom (and technically incomplete,
                    // although serviceable) for def hash.  What is really needed is for
                    // the overloading logic presently hidden away in a few different
                    // places to be properly exposed so we can just call "resolveOverload"
                    // after typer.  Until then:
                    val alts    = ScalaRunTimeModule.info.member(nme.hash_).alternatives
                    def alt1    = alts find (_.info.paramTypes.head =:= qual.tpe)
                    def alt2    = ScalaRunTimeModule.info.member(nme.hash_) suchThat (_.info.paramTypes.head.typeSymbol == AnyClass)
                    val newTree = gen.mkRuntimeCall(nme.hash_, qual :: Nil) setSymbol (alt1 getOrElse alt2)

                    global.typer.typed(newTree)
                }
              } else if (isPrimitiveValueClass(qual.tpe.typeSymbol)) {
                // Rewrite 5.getClass to ScalaRunTime.anyValClass(5)
                global.typer.typed(gen.mkRuntimeCall(nme.anyValClass, List(qual, typer.resolveClassTag(tree.pos, qual.tpe.widen))))
              } else if (primitiveGetClassMethods.contains(fn.symbol)) {
                // if we got here then we're trying to send a primitive getClass method to either
                // a) an Any, in which cage Object_getClass works because Any erases to object. Or
                //
                // b) a non-primitive, e.g. because the qualifier's type is a refinement type where one parent
                //    of the refinement is a primitive and another is AnyRef. In that case
                //    we get a primitive form of _getClass trying to target a boxed value
                //    so we need replace that method name with Object_getClass to get correct behavior.
                //    See SI-5568.
                tree setSymbol Object_getClass
              } else {
                debugwarn(s"The symbol '${fn.symbol}' was interecepted but didn't match any cases, that means the intercepted methods set doesn't match the code")
                tree
              }
            } else qual match {
              case New(tpt) if name == nme.CONSTRUCTOR && tpt.tpe.typeSymbol.isDerivedValueClass =>
                // println("inject derived: "+arg+" "+tpt.tpe)
                val List(arg) = args
                val attachment = new TypeRefAttachment(tree.tpe.asInstanceOf[TypeRef])
                InjectDerivedValue(arg) updateAttachment attachment
              case _ =>
                preEraseNormalApply(tree)
            }

          case _ =>
            preEraseNormalApply(tree)
        }
      }

      def preErase(tree: Tree): Tree = tree match {
        case tree: Apply =>
          preEraseApply(tree)

        case TypeApply(fun, args) if (fun.symbol.owner != AnyClass &&
                                      fun.symbol != Object_asInstanceOf &&
                                      fun.symbol != Object_isInstanceOf) =>
          // leave all other type tests/type casts, remove all other type applications
          preErase(fun)

        case Select(qual, name) =>
          val sym = tree.symbol
          val owner = sym.owner
          if (owner.isRefinementClass) {
            sym.allOverriddenSymbols filterNot (_.owner.isRefinementClass) match {
              case overridden :: _ =>
                log(s"${sym.fullLocationString} originates in refinement class - replacing with ${overridden.fullLocationString}.")
                tree.symbol = overridden
              case Nil =>
                // Ideally this should not be reached or reachable; anything which would
                // get here should have been caught in the surrounding Apply.
                devWarning(s"Failed to rewrite reflective apply - now don't know what to do with " + tree)
                return treeCopy.Select(tree, gen.mkAttributedCast(qual, qual.tpe.widen), name)
            }
          }

          def isAccessible(sym: Symbol) = localTyper.context.isAccessible(sym, sym.owner.thisType)
          if (!isAccessible(owner) && qual.tpe != null) {
            qual match {
              case Super(_, _) =>
                // Insert a cast here at your peril -- see SI-5162. Bail out if the target method is defined in
                // Java, otherwise, we'd get an IllegalAccessError at runtime. If the target method is defined in
                // Scala, however, we should have access.
                if (owner.isJavaDefined) unit.error(tree.pos, s"Unable to access ${tree.symbol.fullLocationString} with a super reference.")
                tree
              case _ =>
                // Todo: Figure out how qual.tpe could be null in the check above (it does appear in build where SwingWorker.this
                // has a null type).
                val qualSym = qual.tpe.widen.typeSymbol
                if (isAccessible(qualSym) && !qualSym.isPackageClass && !qualSym.isPackageObjectClass) {
                  // insert cast to prevent illegal access error (see #4283)
                  // util.trace("insert erasure cast ") (*/
                  treeCopy.Select(tree, gen.mkAttributedCast(qual, qual.tpe.widen), name) //)
                } else tree
            }
          } else tree
        case Template(parents, self, body) =>
          assert(!currentOwner.isImplClass)
          //Console.println("checking no dble defs " + tree)//DEBUG
          checkNoDoubleDefs(tree.symbol.owner)
          treeCopy.Template(tree, parents, noSelfType, addBridges(body, currentOwner))

        case Match(selector, cases) =>
          Match(Typed(selector, TypeTree(selector.tpe)), cases)

        case Literal(ct) if ct.tag == ClazzTag
                         && ct.typeValue.typeSymbol != definitions.UnitClass =>
          val erased = ct.typeValue match {
            case tr @ TypeRef(_, clazz, _) if clazz.isDerivedValueClass => scalaErasure.eraseNormalClassRef(tr)
            case tpe => specialScalaErasure(tpe)
          }
          treeCopy.Literal(tree, Constant(erased))

        case ClassDef(_,_,_,_) =>
          debuglog("defs of " + tree.symbol + " = " + tree.symbol.info.decls)
          copyClassDef(tree)(tparams = Nil)
        case DefDef(_,_,_,_,_,_) =>
          copyDefDef(tree)(tparams = Nil)
        case TypeDef(_, _, _, _) =>
          EmptyTree

        case _ =>
          tree
      }

      override def transform(tree: Tree): Tree = {
        // Reply to "!!! needed?" which adorned the next line: without it, build fails with:
        //   Exception in thread "main" scala.tools.nsc.symtab.Types$TypeError:
        //   value array_this is not a member of object scala.runtime.ScalaRunTime
        //
        // What the heck is array_this? See preTransformer in this file:
        //   gen.mkRuntimeCall("array_"+name, qual :: args)
        if (tree.symbol == ArrayClass && !tree.isType) tree
        else {
          val tree1 = preErase(tree)
          tree1 match {
            case EmptyTree | TypeTree() =>
              tree1 setType specialScalaErasure(tree1.tpe)
            case ArrayValue(elemtpt, trees) =>
              treeCopy.ArrayValue(
                tree1, elemtpt setType specialScalaErasure.applyInArray(elemtpt.tpe), trees map transform).clearType()
            case DefDef(_, _, _, _, tpt, _) =>
              try super.transform(tree1).clearType()
              finally tpt setType specialErasure(tree1.symbol)(tree1.symbol.tpe).resultType
            case _ =>
              super.transform(tree1).clearType()
          }
        }
      }
    }

    /** The main transform function: Pretransfom the tree, and then
     *  re-type it at phase erasure.next.
     */
    override def transform(tree: Tree): Tree = {
      val tree1 = preTransformer.transform(tree)
      // log("tree after pretransform: "+tree1)
      exitingErasure {
        val tree2 = mixinTransformer.transform(tree1)
        // debuglog("tree after addinterfaces: \n" + tree2)

        newTyper(rootContext(unit, tree, erasedTypes = true)).typed(tree2)
      }
    }
  }

  final def resolveAnonymousBridgeClash(sym: Symbol, bridge: Symbol) {
    // TODO reinstate this after Delambdafy generates anonymous classes that meet this requirement.
    // require(sym.owner.isAnonymousClass, sym.owner)
    log(s"Expanding name of ${sym.debugLocationString} as it clashes with bridge. Renaming deemed safe because the owner is anonymous.")
    sym.expandName(sym.owner)
    bridge.resetFlag(BRIDGE)
  }

  private class TypeRefAttachment(val tpe: TypeRef)
}

Other Scala source code examples

Here is a short list of links related to this Scala Erasure.scala source code file:

... this post is sponsored by my books ...

#1 New Release!

FP Best Seller

 

new blog posts

 

Copyright 1998-2024 Alvin Alexander, alvinalexander.com
All Rights Reserved.

A percentage of advertising revenue from
pages under the /java/jwarehouse URI on this website is
paid back to open source projects.