alvinalexander.com | career | drupal | java | mac | mysql | perl | scala | uml | unix  

Scala example source code file (TailCalls.scala)

This example Scala source code file (TailCalls.scala) is included in my "Source Code Warehouse" project. The intent of this project is to help you more easily find Scala source code examples by using tags.

All credit for the original source code belongs to scala-lang.org; I'm just trying to make examples easier to find. (For my Scala work, see my Scala examples and tutorials.)

Scala tags/keywords

apply, boolean, defdef, emptytree, labeldef, list, nil, string, tailcontext, tree

The TailCalls.scala Scala example source code

/* NSC -- new scala compiler
 * Copyright 2005-2013 LAMP/EPFL
 * @author Iulian Dragos
 */

package scala
package tools.nsc
package transform

import symtab.Flags
import Flags.SYNTHETIC

/** Perform tail recursive call elimination.
 *
 *  @author Iulian Dragos
 *  @version 1.0
 */
abstract class TailCalls extends Transform {
  import global._                     // the global environment
  import definitions._                // standard classes and methods
  import typer.typedPos               // methods to type trees

  val phaseName: String = "tailcalls"

  def newTransformer(unit: CompilationUnit): Transformer =
    new TailCallElimination(unit)

  /** Create a new phase which applies transformer */
  override def newPhase(prev: scala.tools.nsc.Phase): StdPhase = new Phase(prev)

  /** The phase defined by this transform */
  class Phase(prev: scala.tools.nsc.Phase) extends StdPhase(prev) {
    def apply(unit: global.CompilationUnit) {
      if (!(settings.debuginfo.value == "notailcalls")) {
        newTransformer(unit).transformUnit(unit)
      }
    }
  }

  import treeInfo.hasSynthCaseSymbol

  /**
   * A Tail Call Transformer
   *
   * @author     Erik Stenman, Iulian Dragos
   * @version    1.1
   *
   * What it does:
   * <p>
   *   Finds method calls in tail-position and replaces them with jumps.
   *   A call is in a tail-position if it is the last instruction to be
   *   executed in the body of a method.  This is done by recursing over
   *   the trees that may contain calls in tail-position (trees that can't
   *   contain such calls are not transformed). However, they are not that
   *   many.
   * </p>
   * <p>
   *   Self-recursive calls in tail-position are replaced by jumps to a
   *   label at the beginning of the method. As the JVM provides no way to
   *   jump from a method to another one, non-recursive calls in
   *   tail-position are not optimized.
   * </p>
   * <p>
   *   A method call is self-recursive if it calls the current method and
   *   the method is final (otherwise, it could
   *   be a call to an overridden method in a subclass). Furthermore, If
   *   the method has type parameters, the call must contain these
   *   parameters as type arguments. Recursive calls on a different instance
   *   are optimized. Since 'this' is not a local variable, a dummy local val
   *   is added and used as a label parameter. The backend knows to load
   *   the corresponding argument in the 'this' (local at index 0). This dummy local
   *   is never used and should be cleand up by dead code elimination (when enabled).
   * </p>
   * <p>
   *   This phase has been moved before pattern matching to catch more
   *   of the common cases of tail recursive functions. This means that
   *   more cases should be taken into account (like nested function, and
   *   pattern cases).
   * </p>
   * <p>
   *   If a method contains self-recursive calls, a label is added to at
   *   the beginning of its body and the calls are replaced by jumps to
   *   that label.
   * </p>
   * <p>
   *   Assumes: `Uncurry` has been run already, and no multiple
   *            parameter lists exit.
   * </p>
   */
  class TailCallElimination(unit: CompilationUnit) extends Transformer {
    private def defaultReason = "it contains a recursive call not in tail position"
    private val failPositions = perRunCaches.newMap[TailContext, Position]() withDefault (_.methodPos)
    private val failReasons   = perRunCaches.newMap[TailContext, String]() withDefaultValue defaultReason
    private def tailrecFailure(ctx: TailContext) {
      val method      = ctx.method
      val failReason  = failReasons(ctx)
      val failPos     = failPositions(ctx)

      unit.error(failPos, s"could not optimize @tailrec annotated $method: $failReason")
    }

    /** Has the label been accessed? Then its symbol is in this set. */
    private val accessed = perRunCaches.newSet[Symbol]()
    // `accessed` was stored as boolean in the current context -- this is no longer tenable
    // with jumps to labels in tailpositions now considered in tailposition,
    // a downstream context may access the label, and the upstream one will be none the wiser
    // this is necessary because tail-calls may occur in places where syntactically they seem impossible
    // (since we now consider jumps to labels that are in tailposition, such as matchEnd(x) {x})

    sealed trait TailContext {
      def method: Symbol          // current method
      def tparams: List[Symbol]   // type parameters
      def methodPos: Position     // default position for failure reporting
      def tailPos: Boolean        // context is in tail position
      def label: Symbol           // new label, tail call target
      def tailLabels: Set[Symbol]

      def enclosingType = method.enclClass.typeOfThis
      def isEligible    = method.isEffectivelyFinalOrNotOverridden
      def isMandatory   = method.hasAnnotation(TailrecClass)
      def isTransformed = isEligible && accessed(label)

      def newThis(pos: Position) = {
        def msg = "Creating new `this` during tailcalls\n  method: %s\n  current class: %s".format(
          method.ownerChain.mkString(" -> "),
          currentClass.ownerChain.mkString(" -> ")
        )
        logResult(msg)(method.newValue(nme.THIS, pos, SYNTHETIC) setInfo currentClass.typeOfThis)
      }
      override def toString = s"${method.name} tparams=$tparams tailPos=$tailPos label=$label label info=${label.info}"

    }

    object EmptyTailContext extends TailContext {
      def method     = NoSymbol
      def tparams    = Nil
      def methodPos  = NoPosition
      def tailPos    = false
      def label      = NoSymbol
      def tailLabels = Set.empty[Symbol]
    }

    class DefDefTailContext(dd: DefDef) extends TailContext {
      def method    = dd.symbol
      def tparams   = dd.tparams map (_.symbol)
      def methodPos = dd.pos
      def tailPos   = true

      lazy val label      = mkLabel()
      lazy val tailLabels = {
        // labels are local to a method, so only traverse the rhs of a defdef
        val collector = new TailPosLabelsTraverser
        collector traverse dd.rhs
        collector.tailLabels.toSet
      }

      private def mkLabel() = {
        val label     = method.newLabel(newTermName("_" + method.name), method.pos)
        val thisParam = method.newSyntheticValueParam(currentClass.typeOfThis)
        label setInfo MethodType(thisParam :: method.tpe.params, method.tpe_*.finalResultType)
        if (isEligible)
          label substInfo (method.tpe.typeParams, tparams)

        label
      }
      private def isRecursiveCall(t: Tree) = {
        val receiver = t.symbol

        (    (receiver != null)
          && receiver.isMethod
          && (method.name == receiver.name)
          && (method.enclClass isSubClass receiver.enclClass)
        )
      }
      def containsRecursiveCall(t: Tree) = t exists isRecursiveCall
    }
    class ClonedTailContext(that: TailContext, override val tailPos: Boolean) extends TailContext {
      def method     = that.method
      def tparams    = that.tparams
      def methodPos  = that.methodPos
      def tailLabels = that.tailLabels
      def label      = that.label
    }

    private var ctx: TailContext = EmptyTailContext
    private def noTailContext()  = new ClonedTailContext(ctx, tailPos = false)
    private def yesTailContext() = new ClonedTailContext(ctx, tailPos = true)


    override def transformUnit(unit: CompilationUnit): Unit = {
      try {
        super.transformUnit(unit)
      } finally {
        // OPT clear these after each compilation unit
        failPositions.clear()
        failReasons.clear()
        accessed.clear()
      }
    }

    /** Rewrite this tree to contain no tail recursive calls */
    def transform(tree: Tree, nctx: TailContext): Tree = {
      val saved = ctx
      ctx = nctx
      try transform(tree)
      finally this.ctx = saved
    }

    def yesTailTransform(tree: Tree): Tree = transform(tree, yesTailContext())
    def noTailTransform(tree: Tree): Tree = transform(tree, noTailContext())
    def noTailTransforms(trees: List[Tree]) = {
      val nctx = noTailContext()
      trees map (t => transform(t, nctx))
    }

    override def transform(tree: Tree): Tree = {
      /* A possibly polymorphic apply to be considered for tail call transformation. */
      def rewriteApply(target: Tree, fun: Tree, targs: List[Tree], args: List[Tree]) = {
        val receiver: Tree = fun match {
          case Select(qual, _)  => qual
          case _                => EmptyTree
        }
        def receiverIsSame    = ctx.enclosingType.widen =:= receiver.tpe.widen
        def receiverIsSuper   = ctx.enclosingType.widen <:< receiver.tpe.widen
        def isRecursiveCall   = (ctx.method eq fun.symbol) && ctx.tailPos
        def transformArgs     = noTailTransforms(args)
        def matchesTypeArgs   = ctx.tparams sameElements (targs map (_.tpe.typeSymbol))

        /* Records failure reason in Context for reporting.
         * Position is unchanged (by default, the method definition.)
         */
        def fail(reason: String) = {
          debuglog("Cannot rewrite recursive call at: " + fun.pos + " because: " + reason)
          if (ctx.isMandatory) failReasons(ctx) = reason
          treeCopy.Apply(tree, noTailTransform(target), transformArgs)
        }
        /* Position of failure is that of the tree being considered. */
        def failHere(reason: String) = {
          if (ctx.isMandatory) failPositions(ctx) = fun.pos
          fail(reason)
        }
        def rewriteTailCall(recv: Tree): Tree = {
          debuglog("Rewriting tail recursive call:  " + fun.pos.lineContent.trim)
          accessed += ctx.label
          typedPos(fun.pos) {
            val args = mapWithIndex(transformArgs)((arg, i) => mkAttributedCastHack(arg, ctx.label.info.params(i + 1).tpe))
            Apply(Ident(ctx.label), noTailTransform(recv) :: args)
          }
        }

        if (!ctx.isEligible)            fail("it is neither private nor final so can be overridden")
        else if (!isRecursiveCall) {
          if (ctx.isMandatory && receiverIsSuper) // OPT expensive check, avoid unless we will actually report the error
                                        failHere("it contains a recursive call targeting a supertype")
          else                          failHere(defaultReason)
        }
        else if (!matchesTypeArgs)      failHere("it is called recursively with different type arguments")
        else if (receiver == EmptyTree) rewriteTailCall(This(currentClass))
        else if (!receiverIsSame)       failHere("it changes type of 'this' on a polymorphic recursive call")
        else                            rewriteTailCall(receiver)
      }
      
      def isEligible(tree: DefDef) = {
        val sym = tree.symbol
        !(sym.hasAccessorFlag || sym.isConstructor)
      }

      tree match {
        case ValDef(_, _, _, _) =>
          if (tree.symbol.isLazy && tree.symbol.hasAnnotation(TailrecClass))
            unit.error(tree.pos, "lazy vals are not tailcall transformed")

          super.transform(tree)

        case dd @ DefDef(_, name, _, vparamss0, _, rhs0) if isEligible(dd) =>
          val newCtx = new DefDefTailContext(dd)
          if (newCtx.isMandatory && !(newCtx containsRecursiveCall rhs0))
            unit.error(tree.pos, "@tailrec annotated method contains no recursive calls")

          debuglog(s"Considering $name for tailcalls, with labels in tailpos: ${newCtx.tailLabels}")
          val newRHS = transform(rhs0, newCtx)

          deriveDefDef(tree) { rhs =>
            if (newCtx.isTransformed) {
              /* We have rewritten the tree, but there may be nested recursive calls remaining.
               * If @tailrec is given we need to fail those now.
               */
              if (newCtx.isMandatory) {
                for (t @ Apply(fn, _) <- newRHS ; if fn.symbol == newCtx.method) {
                  failPositions(newCtx) = t.pos
                  tailrecFailure(newCtx)
                }
              }
              val newThis = newCtx.newThis(tree.pos)
              val vpSyms  = vparamss0.flatten map (_.symbol)

              typedPos(tree.pos)(Block(
                List(ValDef(newThis, This(currentClass))),
                LabelDef(newCtx.label, newThis :: vpSyms, mkAttributedCastHack(newRHS, newCtx.label.tpe.resultType))
              ))
            }
            else {
              if (newCtx.isMandatory && (newCtx containsRecursiveCall newRHS))
                tailrecFailure(newCtx)

              newRHS
            }
          }

        // a translated match
        case Block(stats, expr) if stats forall hasSynthCaseSymbol =>
          // the assumption is once we encounter a case, the remainder of the block will consist of cases
          // the prologue may be empty, usually it is the valdef that stores the scrut
          val (prologue, cases) = stats span (s => !s.isInstanceOf[LabelDef])
          treeCopy.Block(tree,
            noTailTransforms(prologue) ++ transformTrees(cases),
            transform(expr)
          )

        // a translated casedef
        case LabelDef(_, _, body) if hasSynthCaseSymbol(tree) =>
          deriveLabelDef(tree)(transform)

        case Block(stats, expr) =>
          treeCopy.Block(tree,
            noTailTransforms(stats),
            transform(expr)
          )

        case CaseDef(pat, guard, body) =>
          deriveCaseDef(tree)(transform)

        case If(cond, thenp, elsep) =>
          treeCopy.If(tree,
            cond,
            transform(thenp),
            transform(elsep)
          )

        case Match(selector, cases) =>
          treeCopy.Match(tree,
            noTailTransform(selector),
            transformTrees(cases).asInstanceOf[List[CaseDef]]
          )

        case Try(block, catches, finalizer @ EmptyTree) =>
          // SI-1672 Catches are in tail position when there is no finalizer
          treeCopy.Try(tree,
            noTailTransform(block),
            transformTrees(catches).asInstanceOf[List[CaseDef]],
            EmptyTree
          )

        case Try(block, catches, finalizer) =>
           // no calls inside a try are in tail position if there is a finalizer, but keep recursing for nested functions
          treeCopy.Try(tree,
            noTailTransform(block),
            noTailTransforms(catches).asInstanceOf[List[CaseDef]],
            noTailTransform(finalizer)
          )

        case Apply(tapply @ TypeApply(fun, targs), vargs) =>
          rewriteApply(tapply, fun, targs, vargs)

        case Apply(fun, args) if fun.symbol == Boolean_or || fun.symbol == Boolean_and =>
          treeCopy.Apply(tree, fun, transformTrees(args))

        // this is to detect tailcalls in translated matches
        // it's a one-argument call to a label that is in a tailposition and that looks like label(x) {x}
        // thus, the argument to the call is in tailposition
        case Apply(fun, args @ (arg :: Nil)) if fun.symbol.isLabel && ctx.tailLabels(fun.symbol) =>
          debuglog(s"in tailpos label: $arg")
          val res = yesTailTransform(arg)
          // we tail-called -- TODO: shield from false-positives where we rewrite but don't tail-call
          // must leave the jump to the original tailpos-label (fun)!
          // there might be *a* tailcall *in* res, but it doesn't mean res *always* tailcalls
          if (res ne arg)
            treeCopy.Apply(tree, fun, res :: Nil)
          else
            rewriteApply(fun, fun, Nil, args)

        case Apply(fun, args) =>
          rewriteApply(fun, fun, Nil, args)
        case Alternative(_) | Star(_) | Bind(_, _) =>
          sys.error("We should've never gotten inside a pattern")
        case Select(qual, name) =>
          treeCopy.Select(tree, noTailTransform(qual), name)
        case EmptyTree | Super(_, _) | This(_) | Ident(_) | Literal(_) | Function(_, _) | TypeTree() =>
          tree
        case _ =>
          super.transform(tree)
      }
    }

    // Workaround for SI-6900. Uncurry installs an InfoTransformer and a tree Transformer.
    // These leave us with conflicting view on method signatures; the parameter symbols in
    // the MethodType can be clones of the ones originally found on the parameter ValDef, and
    // consequently appearing in the typechecked RHS of the method.
    private def mkAttributedCastHack(tree: Tree, tpe: Type) =
      gen.mkAttributedCast(tree, tpe)
  }

  // collect the LabelDefs (generated by the pattern matcher) in a DefDef that are in tail position
  // the labels all look like: matchEnd(x) {x}
  // then, in a forward jump `matchEnd(expr)`, `expr` is considered in tail position (and the matchEnd jump is replaced by the jump generated by expr)
  class TailPosLabelsTraverser extends Traverser {
    val tailLabels = new scala.collection.mutable.HashSet[Symbol]()

    private var maybeTail: Boolean = true // since we start in the rhs of a DefDef

    def traverse(tree: Tree, maybeTailNew: Boolean): Unit = {
      val saved = maybeTail
      maybeTail = maybeTailNew
      try traverse(tree)
      finally maybeTail = saved
    }

    def traverseNoTail(tree: Tree) = traverse(tree, maybeTailNew = false)
    def traverseTreesNoTail(trees: List[Tree]) = trees foreach traverseNoTail

    override def traverse(tree: Tree) = tree match {
      // we're looking for label(x){x} in tail position, since that means `a` is in tail position in a call `label(a)`
      case LabelDef(_, List(arg), body@Ident(_)) if arg.symbol == body.symbol =>
        if (maybeTail) tailLabels += tree.symbol

      // jumps to matchEnd are transparent; need this case for nested matches
      // (and the translated match case below does things in reverse for this case's sake)
      case Apply(fun, arg :: Nil) if hasSynthCaseSymbol(fun) && tailLabels(fun.symbol) =>
        traverse(arg)

      case Apply(fun, args) if (fun.symbol == Boolean_or || fun.symbol == Boolean_and) =>
        traverseTrees(args)

      // a translated casedef
      case LabelDef(_, _, body) if hasSynthCaseSymbol(tree) =>
        traverse(body)

      // a translated match
      case Block(stats, expr) if stats forall hasSynthCaseSymbol =>
        // the assumption is once we encounter a case, the remainder of the block will consist of cases
        // the prologue may be empty, usually it is the valdef that stores the scrut
        val (prologue, cases) = stats span (s => !s.isInstanceOf[LabelDef])
        traverse(expr)
        traverseTrees(cases.reverse)  // reverse so that we enter the matchEnd LabelDef before we see jumps to it
        traverseTreesNoTail(prologue) // selector (may be absent)

      case CaseDef(pat, guard, body) =>
        traverse(body)

      case Match(selector, cases) =>
        traverseNoTail(selector)
        traverseTrees(cases)

      case dd @ DefDef(_, _, _, _, _, _) => // we are run per-method

      case Block(stats, expr) =>
        traverseTreesNoTail(stats)
        traverse(expr)

      case If(cond, thenp, elsep) =>
        traverse(thenp)
        traverse(elsep)

      case Try(block, catches, finalizer) =>
        traverseNoTail(block)
        traverseTreesNoTail(catches)
        traverseNoTail(finalizer)

      case Apply(_, _) | EmptyTree | Super(_, _) | This(_) | Select(_, _) | Ident(_) | Literal(_) | Function(_, _) | TypeTree() =>
      case _ => super.traverse(tree)
    }
  }
}

Other Scala source code examples

Here is a short list of links related to this Scala TailCalls.scala source code file:

... this post is sponsored by my books ...

#1 New Release!

FP Best Seller

 

new blog posts

 

Copyright 1998-2024 Alvin Alexander, alvinalexander.com
All Rights Reserved.

A percentage of advertising revenue from
pages under the /java/jwarehouse URI on this website is
paid back to open source projects.