|
Scala example source code file (UnCurry.scala)
The UnCurry.scala Scala example source code/* NSC -- new Scala compiler * Copyright 2005-2013 LAMP/EPFL * @author */ package scala package tools.nsc package transform import symtab.Flags._ import scala.collection.{ mutable, immutable } import scala.language.postfixOps /*<export> */ /** - uncurry all symbol and tree types (@see UnCurryPhase) -- this includes normalizing all proper types. * - for every curried parameter list: (ps_1) ... (ps_n) ==> (ps_1, ..., ps_n) * - for every curried application: f(args_1)...(args_n) ==> f(args_1, ..., args_n) * - for every type application: f[Ts] ==> f[Ts]() unless followed by parameters * - for every use of a parameterless function: f ==> f() and q.f ==> q.f() * - for every def-parameter: x: => T ==> x: () => T * - for every use of a def-parameter: x ==> x.apply() * - for every argument to a def parameter `x: => T': * if argument is not a reference to a def parameter: * convert argument `e` to (expansion of) `() => e' * - for every repeated Scala parameter `x: T*' --> x: Seq[T]. * - for every repeated Java parameter `x: T...' --> x: Array[T], except: * if T is an unbounded abstract type, replace --> x: Array[Object] * - for every argument list that corresponds to a repeated Scala parameter * (a_1, ..., a_n) => (Seq(a_1, ..., a_n)) * - for every argument list that corresponds to a repeated Java parameter * (a_1, ..., a_n) => (Array(a_1, ..., a_n)) * - for every argument list that is an escaped sequence * (a_1:_*) => (a_1) (possibly converted to sequence or array, as needed) * - convert implicit method types to method types * - convert non-trivial catches in try statements to matches * - convert non-local returns to throws with enclosing try statements. * - convert try-catch expressions in contexts where there might be values on the stack to * a local method and a call to it (since an exception empties the evaluation stack): * * meth(x_1,..., try { x_i } catch { ..}, .. x_b0) ==> * { * def liftedTry$1 = try { x_i } catch { .. } * meth(x_1, .., liftedTry$1(), .. ) * } */ /*</export> */ abstract class UnCurry extends InfoTransform with scala.reflect.internal.transform.UnCurry with TypingTransformers with ast.TreeDSL { val global: Global // need to repeat here because otherwise last mixin defines global as // SymbolTable. If we had DOT this would not be an issue import global._ // the global environment import definitions._ // standard classes and methods import CODE._ val phaseName: String = "uncurry" def newTransformer(unit: CompilationUnit): Transformer = new UnCurryTransformer(unit) override def changesBaseClasses = false // ------ Type transformation -------------------------------------------------------- // uncurry and uncurryType expand type aliases class UnCurryTransformer(unit: CompilationUnit) extends TypingTransformer(unit) { private val inlineFunctionExpansion = settings.Ydelambdafy.value == "inline" private var needTryLift = false private var inConstructorFlag = 0L private val byNameArgs = mutable.HashSet[Tree]() private val noApply = mutable.HashSet[Tree]() private val newMembers = mutable.Map[Symbol, mutable.Buffer[Tree]]() private val repeatedParams = mutable.Map[Symbol, List[ValDef]]() /** Add a new synthetic member for `currentOwner` */ private def addNewMember(t: Tree): Unit = newMembers.getOrElseUpdate(currentOwner, mutable.Buffer()) += t /** Process synthetic members for `owner`. They are removed form the `newMembers` as a side-effect. */ @inline private def useNewMembers[T](owner: Symbol)(f: List[Tree] => T): T = f(newMembers.remove(owner).getOrElse(Nil).toList) private def newFunction0(body: Tree): Tree = { val result = localTyper.typedPos(body.pos)(Function(Nil, body)).asInstanceOf[Function] log("Change owner from %s to %s in %s".format(currentOwner, result.symbol, result.body)) result.body changeOwner (currentOwner -> result.symbol) transformFunction(result) } // I don't have a clue why I'm catching TypeErrors here, but it's better // than spewing stack traces at end users for internal errors. Examples // which hit at this point should not be hard to come by, but the immediate // motivation can be seen in continuations-neg/t3718. override def transform(tree: Tree): Tree = ( try postTransform(mainTransform(tree)) catch { case ex: TypeError => unit.error(ex.pos, ex.msg) debugStack(ex) EmptyTree } ) /* Is tree a reference `x` to a call by name parameter that needs to be converted to * x.apply()? Note that this is not the case if `x` is used as an argument to another * call by name parameter. */ def isByNameRef(tree: Tree) = ( tree.isTerm && (tree.symbol ne null) && (isByName(tree.symbol)) && !byNameArgs(tree) ) // ------- Handling non-local returns ------------------------------------------------- /** The type of a non-local return expression with given argument type */ private def nonLocalReturnExceptionType(argtype: Type) = appliedType(NonLocalReturnControlClass, argtype) /** A hashmap from method symbols to non-local return keys */ private val nonLocalReturnKeys = perRunCaches.newMap[Symbol, Symbol]() /** Return non-local return key for given method */ private def nonLocalReturnKey(meth: Symbol) = nonLocalReturnKeys.getOrElseUpdate(meth, meth.newValue(unit.freshTermName("nonLocalReturnKey"), meth.pos, SYNTHETIC) setInfo ObjectTpe ) /** Generate a non-local return throw with given return expression from given method. * I.e. for the method's non-local return key, generate: * * throw new NonLocalReturnControl(key, expr) * todo: maybe clone a pre-existing exception instead? * (but what to do about exceptions that miss their targets?) */ private def nonLocalReturnThrow(expr: Tree, meth: Symbol) = localTyper typed { Throw( nonLocalReturnExceptionType(expr.tpe.widen), Ident(nonLocalReturnKey(meth)), expr ) } /** Transform (body, key) to: * * { * val key = new Object() * try { * body * } catch { * case ex: NonLocalReturnControl[T @unchecked] => * if (ex.key().eq(key)) ex.value() * else throw ex * } * } */ private def nonLocalReturnTry(body: Tree, key: Symbol, meth: Symbol) = { localTyper typed { val restpe = meth.tpe_*.finalResultType val extpe = nonLocalReturnExceptionType(restpe) val ex = meth.newValue(nme.ex, body.pos) setInfo extpe val argType = restpe withAnnotation (AnnotationInfo marker UncheckedClass.tpe) val pat = gen.mkBindForCase(ex, NonLocalReturnControlClass, List(argType)) val rhs = ( IF ((ex DOT nme.key)() OBJ_EQ Ident(key)) THEN ((ex DOT nme.value)()) ELSE (Throw(Ident(ex))) ) val keyDef = ValDef(key, New(ObjectTpe)) val tryCatch = Try(body, pat -> rhs) import treeInfo.{catchesThrowable, isSyntheticCase} for { Try(t, catches, _) <- body cdef <- catches if catchesThrowable(cdef) && !isSyntheticCase(cdef) } { unit.warning(body.pos, "catch block may intercept non-local return from " + meth) } Block(List(keyDef), tryCatch) } } // ------ Transforming anonymous functions and by-name-arguments ---------------- /** Undo eta expansion for parameterless and nullary methods */ def deEta(fun: Function): Tree = fun match { case Function(List(), expr) if isByNameRef(expr) => noApply += expr expr case _ => fun } /** Transform a function node (x_1,...,x_n) => body of type FunctionN[T_1, .., T_N, R] to * * class $anon() extends AbstractFunctionN[T_1, .., T_N, R] with Serializable { * def apply(x_1: T_1, ..., x_N: T_n): R = body * } * new $anon() * */ def transformFunction(fun: Function): Tree = { fun.tpe match { // can happen when analyzer plugins assign refined types to functions, e.g. // (() => Int) { def apply(): Int @typeConstraint } case RefinedType(List(funTp), decls) => debuglog(s"eliminate refinement from function type ${fun.tpe}") fun.tpe = funTp case _ => () } deEta(fun) match { // nullary or parameterless case fun1 if fun1 ne fun => fun1 case _ => def typedFunPos(t: Tree) = localTyper.typedPos(fun.pos)(t) val funParams = fun.vparams map (_.symbol) def mkMethod(owner: Symbol, name: TermName, additionalFlags: FlagSet = NoFlags): DefDef = gen.mkMethodFromFunction(localTyper)(fun, owner, name, additionalFlags) val canUseDelamdafyMethod = (inConstructorFlag == 0) // Avoiding synthesizing code prone to SI-6666, SI-8363 by using old-style lambda translation if (inlineFunctionExpansion || !canUseDelamdafyMethod) { val parents = addSerializable(abstractFunctionForFunctionType(fun.tpe)) val anonClass = fun.symbol.owner newAnonymousFunctionClass(fun.pos, inConstructorFlag) addAnnotation SerialVersionUIDAnnotation anonClass setInfo ClassInfoType(parents, newScope, anonClass) val applyMethodDef = mkMethod(anonClass, nme.apply) anonClass.info.decls enter applyMethodDef.symbol typedFunPos { Block( ClassDef(anonClass, NoMods, ListOfNil, List(applyMethodDef), fun.pos), Typed(New(anonClass.tpe), TypeTree(fun.tpe))) } } else { // method definition with the same arguments, return type, and body as the original lambda val liftedMethod = mkMethod(fun.symbol.owner, nme.ANON_FUN_NAME, additionalFlags = ARTIFACT) // new function whose body is just a call to the lifted method val newFun = deriveFunction(fun)(_ => typedFunPos( gen.mkForwarder(gen.mkAttributedRef(liftedMethod.symbol), funParams :: Nil) )) typedFunPos(Block(liftedMethod, super.transform(newFun))) } } } def transformArgs(pos: Position, fun: Symbol, args: List[Tree], formals: List[Type]) = { val isJava = fun.isJavaDefined def transformVarargs(varargsElemType: Type) = { def mkArrayValue(ts: List[Tree], elemtp: Type) = ArrayValue(TypeTree(elemtp), ts) setType arrayType(elemtp) // when calling into scala varargs, make sure it's a sequence. def arrayToSequence(tree: Tree, elemtp: Type) = { exitingUncurry { localTyper.typedPos(pos) { val pt = arrayType(elemtp) val adaptedTree = // might need to cast to Array[elemtp], as arrays are not covariant if (tree.tpe <:< pt) tree else gen.mkCastArray(tree, elemtp, pt) gen.mkWrapArray(adaptedTree, elemtp) } } } // when calling into java varargs, make sure it's an array - see bug #1360 def sequenceToArray(tree: Tree) = { val toArraySym = tree.tpe member nme.toArray assert(toArraySym != NoSymbol) def getClassTag(tp: Type): Tree = { val tag = localTyper.resolveClassTag(tree.pos, tp) // Don't want bottom types getting any further than this (SI-4024) if (tp.typeSymbol.isBottomClass) getClassTag(AnyTpe) else if (!tag.isEmpty) tag else if (tp.bounds.hi ne tp) getClassTag(tp.bounds.hi) else localTyper.TyperErrorGen.MissingClassTagError(tree, tp) } def traversableClassTag(tpe: Type): Tree = { (tpe baseType TraversableClass).typeArgs match { case targ :: _ => getClassTag(targ) case _ => EmptyTree } } exitingUncurry { localTyper.typedPos(pos) { gen.mkMethodCall(tree, toArraySym, Nil, List(traversableClassTag(tree.tpe))) } } } var suffix: Tree = if (treeInfo isWildcardStarArgList args) { val Typed(tree, _) = args.last if (isJava) if (tree.tpe.typeSymbol == ArrayClass) tree else sequenceToArray(tree) else if (tree.tpe.typeSymbol isSubClass SeqClass) tree else arrayToSequence(tree, varargsElemType) } else { def mkArray = mkArrayValue(args drop (formals.length - 1), varargsElemType) if (isJava) mkArray else if (args.isEmpty) gen.mkNil // avoid needlessly double-wrapping an empty argument list else arrayToSequence(mkArray, varargsElemType) } exitingUncurry { if (isJava && !isReferenceArray(suffix.tpe) && isArrayOfSymbol(fun.tpe.params.last.tpe, ObjectClass)) { // The array isn't statically known to be a reference array, so call ScalaRuntime.toObjectArray. suffix = localTyper.typedPos(pos) { gen.mkRuntimeCall(nme.toObjectArray, List(suffix)) } } } args.take(formals.length - 1) :+ (suffix setType formals.last) } val args1 = if (isVarArgTypes(formals)) transformVarargs(formals.last.typeArgs.head) else args map2(formals, args1) { (formal, arg) => if (!isByNameParamType(formal)) arg else if (isByNameRef(arg)) { byNameArgs += arg arg setType functionType(Nil, arg.tpe) } else { log(s"Argument '$arg' at line ${arg.pos.line} is $formal from ${fun.fullName}") def canUseDirectly(recv: Tree) = ( recv.tpe.typeSymbol.isSubClass(FunctionClass(0)) && treeInfo.isExprSafeToInline(recv) ) arg match { // don't add a thunk for by-name argument if argument already is an application of // a Function0. We can then remove the application and use the existing Function0. case Apply(Select(recv, nme.apply), Nil) if canUseDirectly(recv) => recv case _ => newFunction0(arg) } } } } /** Called if a tree's symbol is elidable. If it's a DefDef, * replace only the body/rhs with 0/false/()/null; otherwise replace * the whole tree with it. */ private def replaceElidableTree(tree: Tree): Tree = { tree match { case DefDef(_,_,_,_,_,_) => deriveDefDef(tree)(rhs => Block(Nil, gen.mkZero(rhs.tpe)) setType rhs.tpe) setSymbol tree.symbol setType tree.tpe case _ => gen.mkZero(tree.tpe) setType tree.tpe } } private def isSelfSynchronized(ddef: DefDef) = ddef.rhs match { case Apply(fn @ TypeApply(Select(sel, _), _), _) => fn.symbol == Object_synchronized && sel.symbol == ddef.symbol.enclClass && !ddef.symbol.enclClass.isTrait case _ => false } /** If an eligible method is entirely wrapped in a call to synchronized * locked on the same instance, remove the synchronized scaffolding and * mark the method symbol SYNCHRONIZED for bytecode generation. */ private def translateSynchronized(tree: Tree) = tree match { case dd @ DefDef(_, _, _, _, _, Apply(fn, body :: Nil)) if isSelfSynchronized(dd) => log("Translating " + dd.symbol.defString + " into synchronized method") dd.symbol setFlag SYNCHRONIZED deriveDefDef(dd)(_ => body) case _ => tree } def isNonLocalReturn(ret: Return) = ret.symbol != currentOwner.enclMethod || currentOwner.isLazy || currentOwner.isAnonymousFunction // ------ The tree transformers -------------------------------------------------------- def mainTransform(tree: Tree): Tree = { @inline def withNeedLift(needLift: Boolean)(f: => Tree): Tree = { val saved = needTryLift needTryLift = needLift try f finally needTryLift = saved } /* Transform tree `t` to { def f = t; f } where `f` is a fresh name */ def liftTree(tree: Tree) = { debuglog("lifting tree at: " + (tree.pos)) val sym = currentOwner.newMethod(unit.freshTermName("liftedTree"), tree.pos) sym.setInfo(MethodType(List(), tree.tpe)) tree.changeOwner(currentOwner -> sym) localTyper.typedPos(tree.pos)(Block( List(DefDef(sym, ListOfNil, tree)), Apply(Ident(sym), Nil) )) } def withInConstructorFlag(inConstructorFlag: Long)(f: => Tree): Tree = { val saved = this.inConstructorFlag this.inConstructorFlag = inConstructorFlag try f finally this.inConstructorFlag = saved } val sym = tree.symbol // true if the taget is a lambda body that's been lifted into a method def isLiftedLambdaBody(target: Tree) = target.symbol.isLocalToBlock && target.symbol.isArtifact && target.symbol.name.containsName(nme.ANON_FUN_NAME) val result = ( // TODO - settings.noassertions.value temporarily retained to avoid // breakage until a reasonable interface is settled upon. if ((sym ne null) && (sym.elisionLevel.exists (_ < settings.elidebelow.value || settings.noassertions))) replaceElidableTree(tree) else translateSynchronized(tree) match { case dd @ DefDef(mods, name, tparams, _, tpt, rhs) => // Remove default argument trees from parameter ValDefs, SI-4812 val vparamssNoRhs = dd.vparamss mapConserve (_ mapConserve {p => treeCopy.ValDef(p, p.mods, p.name, p.tpt, EmptyTree) }) if (dd.symbol hasAnnotation VarargsClass) saveRepeatedParams(dd) withNeedLift(needLift = false) { if (dd.symbol.isClassConstructor) { atOwner(sym) { val rhs1 = (rhs: @unchecked) match { case Block(stats, expr) => def transformInConstructor(stat: Tree) = withInConstructorFlag(INCONSTRUCTOR) { transform(stat) } val presupers = treeInfo.preSuperFields(stats) map transformInConstructor val rest = stats drop presupers.length val supercalls = rest take 1 map transformInConstructor val others = rest drop 1 map transform treeCopy.Block(rhs, presupers ::: supercalls ::: others, transform(expr)) } treeCopy.DefDef( dd, mods, name, transformTypeDefs(tparams), transformValDefss(vparamssNoRhs), transform(tpt), rhs1) } } else { super.transform(treeCopy.DefDef(dd, mods, name, tparams, vparamssNoRhs, tpt, rhs)) } } case ValDef(_, _, _, rhs) => if (sym eq NoSymbol) throw new IllegalStateException("Encountered Valdef without symbol: "+ tree + " in "+ unit) if (!sym.owner.isSourceMethod) withNeedLift(needLift = true) { super.transform(tree) } else super.transform(tree) case UnApply(fn, args) => val fn1 = transform(fn) val args1 = fn.symbol.name match { case nme.unapplySeq => transformArgs(tree.pos, fn.symbol, args, patmat.alignPatterns(tree).expectedTypes) case _ => args } treeCopy.UnApply(tree, fn1, args1) case Apply(fn, args) => val needLift = needTryLift || !fn.symbol.isLabel // SI-6749, no need to lift in args to label jumps. withNeedLift(needLift) { val formals = fn.tpe.paramTypes treeCopy.Apply(tree, transform(fn), transformTrees(transformArgs(tree.pos, fn.symbol, args, formals))) } case Assign(_: RefTree, _) => withNeedLift(needLift = true) { super.transform(tree) } case Assign(lhs, _) if lhs.symbol.owner != currentMethod || lhs.symbol.hasFlag(LAZY | ACCESSOR) => withNeedLift(needLift = true) { super.transform(tree) } case ret @ Return(_) if (isNonLocalReturn(ret)) => withNeedLift(needLift = true) { super.transform(ret) } case Try(_, Nil, _) => // try-finally does not need lifting: lifting is needed only for try-catch // expressions that are evaluated in a context where the stack might not be empty. // `finally` does not attempt to continue evaluation after an exception, so the fact // that values on the stack are 'lost' does not matter super.transform(tree) case Try(block, catches, finalizer) => if (needTryLift) transform(liftTree(tree)) else super.transform(tree) case CaseDef(pat, guard, body) => val pat1 = transform(pat) treeCopy.CaseDef(tree, pat1, transform(guard), transform(body)) // if a lambda is already the right shape we don't need to transform it again case fun @ Function(_, Apply(target, _)) if (!inlineFunctionExpansion) && isLiftedLambdaBody(target) => super.transform(fun) case fun @ Function(_, _) => mainTransform(transformFunction(fun)) case Template(_, _, _) => withInConstructorFlag(0) { super.transform(tree) } case _ => val tree1 = super.transform(tree) if (isByNameRef(tree1)) { val tree2 = tree1 setType functionType(Nil, tree1.tpe) return { if (noApply contains tree2) tree2 else localTyper.typedPos(tree1.pos)(Apply(Select(tree2, nme.apply), Nil)) } } tree1 } ) assert(result.tpe != null, result.shortClass + " tpe is null:\n" + result) result modifyType uncurry } def postTransform(tree: Tree): Tree = exitingUncurry { def applyUnary(): Tree = { // TODO_NMT: verify that the inner tree of a type-apply also gets parens if the // whole tree is a polymorphic nullary method application def removeNullary() = tree.tpe match { case MethodType(_, _) => tree case tp => tree setType MethodType(Nil, tp.resultType) } if (tree.symbol.isMethod && !tree.tpe.isInstanceOf[PolyType]) gen.mkApplyIfNeeded(removeNullary()) else if (tree.isType) TypeTree(tree.tpe) setPos tree.pos else tree } def isThrowable(pat: Tree): Boolean = pat match { case Typed(Ident(nme.WILDCARD), tpt) => tpt.tpe =:= ThrowableTpe case Bind(_, pat) => isThrowable(pat) case _ => false } tree match { /* Some uncurry post transformations add members to templates. * * Members registered by `addMembers` for the current template are added * once the template transformation has finished. * * In particular, this case will add: * - synthetic Java varargs forwarders for repeated parameters */ case Template(_, _, _) => localTyper = typer.atOwner(tree, currentClass) useNewMembers(currentClass) { newMembers => deriveTemplate(tree)(transformTrees(newMembers) ::: _) } case dd @ DefDef(_, _, _, vparamss0, _, rhs0) => val (newParamss, newRhs): (List[List[ValDef]], Tree) = if (dependentParamTypeErasure isDependent dd) dependentParamTypeErasure erase dd else { val vparamss1 = vparamss0 match { case _ :: Nil => vparamss0 case _ => vparamss0.flatten :: Nil } (vparamss1, rhs0) } val flatdd = copyDefDef(dd)( vparamss = newParamss, rhs = nonLocalReturnKeys get dd.symbol match { case Some(k) => atPos(newRhs.pos)(nonLocalReturnTry(newRhs, k, dd.symbol)) case None => newRhs } ) addJavaVarargsForwarders(dd, flatdd) case tree: Try => if (tree.catches exists (cd => !treeInfo.isCatchCase(cd))) devWarning("VPM BUG - illegal try/catch " + tree.catches) tree case Apply(Apply(fn, args), args1) => treeCopy.Apply(tree, fn, args ::: args1) case Ident(name) => assert(name != tpnme.WILDCARD_STAR, tree) applyUnary() case Select(_, _) | TypeApply(_, _) => applyUnary() case ret @ Return(expr) if isNonLocalReturn(ret) => log("non-local return from %s to %s".format(currentOwner.enclMethod, ret.symbol)) atPos(ret.pos)(nonLocalReturnThrow(expr, ret.symbol)) case TypeTree() => tree case _ => if (tree.isType) TypeTree(tree.tpe) setPos tree.pos else tree } } /** * When we concatenate parameter lists, formal parameter types that were dependent * on prior parameter values will no longer be correctly scoped. * * For example: * * {{{ * def foo(a: A)(b: a.B): a.type = {b; b} * // after uncurry * def foo(a: A, b: a/* NOT IN SCOPE! */.B): a.B = {b; b} * }}} * * This violates the principle that each compiler phase should produce trees that * can be retyped (see [[scala.tools.nsc.typechecker.TreeCheckers]]), and causes * a practical problem in `erasure`: it is not able to correctly determine if * such a signature overrides a corresponding signature in a parent. (SI-6443). * * This transformation erases the dependent method types by: * - Widening the formal parameter type to existentially abstract * over the prior parameters (using `packSymbols`). This transformation * is performed in the the `InfoTransform`er [[scala.reflect.internal.transform.UnCurry]]. * - Inserting casts in the method body to cast to the original, * precise type. * * For the example above, this results in: * * {{{ * def foo(a: A, b: a.B forSome { val a: A }): a.B = { val b$1 = b.asInstanceOf[a.B]; b$1; b$1 } * }}} */ private object dependentParamTypeErasure { sealed abstract class ParamTransform { def param: ValDef } final case class Identity(param: ValDef) extends ParamTransform final case class Packed(param: ValDef, tempVal: ValDef) extends ParamTransform def isDependent(dd: DefDef): Boolean = enteringUncurry { val methType = dd.symbol.info methType.isDependentMethodType && mexists(methType.paramss)(_.info exists (_.isImmediatelyDependent)) } /** * @return (newVparamss, newRhs) */ def erase(dd: DefDef): (List[List[ValDef]], Tree) = { import dd.{ vparamss, rhs } val paramTransforms: List[ParamTransform] = map2(vparamss.flatten, dd.symbol.info.paramss.flatten) { (p, infoParam) => val packedType = infoParam.info if (packedType =:= p.symbol.info) Identity(p) else { // The Uncurry info transformer existentially abstracted over value parameters // from the previous parameter lists. // Change the type of the param symbol p.symbol updateInfo packedType // Create a new param tree val newParam: ValDef = copyValDef(p)(tpt = TypeTree(packedType)) // Within the method body, we'll cast the parameter to the originally // declared type and assign this to a synthetic val. Later, we'll patch // the method body to refer to this, rather than the parameter. val tempVal: ValDef = { val tempValName = unit freshTermName (p.name + "$") val newSym = dd.symbol.newTermSymbol(tempValName, p.pos, SYNTHETIC).setInfo(p.symbol.info) atPos(p.pos)(ValDef(newSym, gen.mkAttributedCast(Ident(p.symbol), p.symbol.info))) } Packed(newParam, tempVal) } } val allParams = paramTransforms map (_.param) val (packedParams, tempVals) = paramTransforms.collect { case Packed(param, tempVal) => (param, tempVal) }.unzip val rhs1 = if (tempVals.isEmpty) rhs else { localTyper.typedPos(rhs.pos) { // Patch the method body to refer to the temp vals val rhsSubstituted = rhs.substituteSymbols(packedParams map (_.symbol), tempVals map (_.symbol)) // The new method body: { val p$1 = p.asInstanceOf[<dependent type>]; ...; <rhsSubstituted> } Block(tempVals, rhsSubstituted) } } (allParams :: Nil, rhs1) } } /* Analyzes repeated params if method is annotated as `varargs`. * If the repeated params exist, it saves them into the `repeatedParams` map, * which is used later. */ private def saveRepeatedParams(dd: DefDef): Unit = if (dd.symbol.isConstructor) unit.error(dd.symbol.pos, "A constructor cannot be annotated with a `varargs` annotation.") else treeInfo.repeatedParams(dd) match { case Nil => unit.error(dd.symbol.pos, "A method without repeated parameters cannot be annotated with the `varargs` annotation.") case reps => repeatedParams(dd.symbol) = reps } /* Called during post transform, after the method argument lists have been flattened. * It looks for the method in the `repeatedParams` map, and generates a Java-style * varargs forwarder. */ private def addJavaVarargsForwarders(dd: DefDef, flatdd: DefDef): DefDef = { if (!dd.symbol.hasAnnotation(VarargsClass) || !repeatedParams.contains(dd.symbol)) return flatdd def toArrayType(tp: Type): Type = { val arg = elementType(SeqClass, tp) // to prevent generation of an `Object` parameter from `Array[T]` parameter later // as this would crash the Java compiler which expects an `Object[]` array for varargs // e.g. def foo[T](a: Int, b: T*) // becomes def foo[T](a: Int, b: Array[Object]) // instead of def foo[T](a: Int, b: Array[T]) ===> def foo[T](a: Int, b: Object) arrayType( if (arg.typeSymbol.isTypeParameterOrSkolem) ObjectTpe else arg ) } val reps = repeatedParams(dd.symbol) val rpsymbols = reps.map(_.symbol).toSet val theTyper = typer.atOwner(dd, currentClass) val flatparams = flatdd.vparamss.head // create the type val forwformals = flatparams map { case p if rpsymbols(p.symbol) => toArrayType(p.symbol.tpe) case p => p.symbol.tpe } val forwresult = dd.symbol.tpe_*.finalResultType val forwformsyms = map2(forwformals, flatparams)((tp, oldparam) => currentClass.newValueParameter(oldparam.name, oldparam.symbol.pos).setInfo(tp) ) def mono = MethodType(forwformsyms, forwresult) val forwtype = dd.symbol.tpe match { case MethodType(_, _) => mono case PolyType(tps, _) => PolyType(tps, mono) } // create the symbol val forwsym = currentClass.newMethod(dd.name.toTermName, dd.pos, VARARGS | SYNTHETIC | flatdd.symbol.flags) setInfo forwtype def forwParams = forwsym.info.paramss.flatten // create the tree val forwtree = theTyper.typedPos(dd.pos) { val locals = map2(forwParams, flatparams) { case (_, fp) if !rpsymbols(fp.symbol) => null case (argsym, fp) => Block(Nil, gen.mkCast( gen.mkWrapArray(Ident(argsym), elementType(ArrayClass, argsym.tpe)), seqType(elementType(SeqClass, fp.symbol.tpe)) ) ) } val seqargs = map2(locals, forwParams) { case (null, argsym) => Ident(argsym) case (l, _) => l } val end = if (forwsym.isConstructor) List(UNIT) else Nil DefDef(forwsym, BLOCK(Apply(gen.mkAttributedRef(flatdd.symbol), seqargs) :: end : _*)) } // check if the method with that name and those arguments already exists in the template currentClass.info.member(forwsym.name).alternatives.find(s => s != forwsym && s.tpe.matches(forwsym.tpe)) match { case Some(s) => unit.error(dd.symbol.pos, "A method with a varargs annotation produces a forwarder method with the same signature " + s.tpe + " as an existing method.") case None => // enter symbol into scope currentClass.info.decls enter forwsym addNewMember(forwtree) } flatdd } } } Other Scala source code examplesHere is a short list of links related to this Scala UnCurry.scala source code file: |
... this post is sponsored by my books ... | |
#1 New Release! |
FP Best Seller |
Copyright 1998-2024 Alvin Alexander, alvinalexander.com
All Rights Reserved.
A percentage of advertising revenue from
pages under the /java/jwarehouse
URI on this website is
paid back to open source projects.