alvinalexander.com | career | drupal | java | mac | mysql | perl | scala | uml | unix  

Scala example source code file (RefChecks.scala)

This example Scala source code file (RefChecks.scala) is included in my "Source Code Warehouse" project. The intent of this project is to help you more easily find Scala source code examples by using tags.

All credit for the original source code belongs to scala-lang.org; I'm just trying to make examples easier to find. (For my Scala work, see my Scala examples and tutorials.)

Scala tags/keywords

boolean, collection, compiler, defdef, list, mutable, nil, nosymbol, nsc, select, string, symbol, tree, type

The RefChecks.scala Scala example source code

/* NSC -- new Scala compiler
 * Copyright 2005-2013 LAMP/EPFL
 * @author  Martin Odersky
 */

package scala.tools.nsc
package typechecker

import symtab.Flags._
import scala.collection.{ mutable, immutable }
import transform.InfoTransform
import scala.collection.mutable.ListBuffer
import scala.language.postfixOps
import scala.tools.nsc.settings.ScalaVersion
import scala.tools.nsc.settings.AnyScalaVersion
import scala.tools.nsc.settings.NoScalaVersion

/** <p>
 *    Post-attribution checking and transformation.
 *  </p>
 *  <p>
 *    This phase performs the following checks.
 *  </p>
 *  <ul>
 *    <li>All overrides conform to rules.</li>
 *    <li>All type arguments conform to bounds.</li>
 *    <li>All type variable uses conform to variance annotations.</li>
 *    <li>No forward reference to a term symbol extends beyond a value definition.</li>
 *  </ul>
 *  <p>
 *    It performs the following transformations.
 *  </p>
 *  <ul>
 *   <li>Local modules are replaced by variables and classes</li>
 *   <li>Calls to case factory methods are replaced by new's.</li>
 *   <li>Eliminate branches in a conditional if the condition is a constant</li>
 *  </ul>
 *
 *  @author  Martin Odersky
 *  @version 1.0
 *
 *  @todo    Check whether we always check type parameter bounds.
 */
abstract class RefChecks extends InfoTransform with scala.reflect.internal.transform.RefChecks {

  val global: Global               // need to repeat here because otherwise last mixin defines global as
                                   // SymbolTable. If we had DOT this would not be an issue

  import global._
  import definitions._
  import typer.{typed, typedOperator, atOwner}

  /** the following two members override abstract members in Transform */
  val phaseName: String = "refchecks"
  override def phaseNewFlags: Long = lateMETHOD

  def newTransformer(unit: CompilationUnit): RefCheckTransformer =
    new RefCheckTransformer(unit)
  override def changesBaseClasses = false

  override def transformInfo(sym: Symbol, tp: Type): Type = {
    // !!! This is a sketchy way to do things.
    // It would be better to replace the module symbol with a method symbol
    // rather than creating this module/method hybrid which must be special
    // cased all over the place. Look for the call sites which use(d) some
    // variation of "isMethod && !isModule", which to an observer looks like
    // a nonsensical condition. (It is now "isModuleNotMethod".)
    if (sym.isModule && !sym.isStatic) {
      sym setFlag lateMETHOD | STABLE
      // Note that this as far as we can see it works equally well
      // to set the METHOD flag here and dump lateMETHOD, but it does
      // mean that under separate compilation the typer will see
      // modules as methods (albeit stable ones with singleton types.)
      // So for now lateMETHOD lives while we try to convince ourselves
      // we can live without it or deliver that info some other way.
      log(s"Stabilizing module method for ${sym.fullLocationString}")
    }
    super.transformInfo(sym, tp)
  }

  val toJavaRepeatedParam  = new SubstSymMap(RepeatedParamClass -> JavaRepeatedParamClass)
  val toScalaRepeatedParam = new SubstSymMap(JavaRepeatedParamClass -> RepeatedParamClass)

  def accessFlagsToString(sym: Symbol) = flagsToString(
    sym getFlag (PRIVATE | PROTECTED),
    if (sym.hasAccessBoundary) "" + sym.privateWithin.name else ""
  )

  def overridesTypeInPrefix(tp1: Type, tp2: Type, prefix: Type): Boolean = (tp1.dealiasWiden, tp2.dealiasWiden) match {
    case (MethodType(List(), rtp1), NullaryMethodType(rtp2)) =>
      rtp1 <:< rtp2
    case (NullaryMethodType(rtp1), MethodType(List(), rtp2)) =>
      rtp1 <:< rtp2
    case (TypeRef(_, sym, _),  _) if sym.isModuleClass =>
      overridesTypeInPrefix(NullaryMethodType(tp1), tp2, prefix)
    case _ =>
      def classBoundAsSeen(tp: Type) = tp.typeSymbol.classBound.asSeenFrom(prefix, tp.typeSymbol.owner)

      (tp1 <:< tp2) || (  // object override check
        tp1.typeSymbol.isModuleClass && tp2.typeSymbol.isModuleClass && {
          val cb1 = classBoundAsSeen(tp1)
          val cb2 = classBoundAsSeen(tp2)
          (cb1 <:< cb2) && {
            log("Allowing %s to override %s because %s <:< %s".format(tp1, tp2, cb1, cb2))
            true
          }
        }
      )
  }

  class RefCheckTransformer(unit: CompilationUnit) extends Transformer {

    var localTyper: analyzer.Typer = typer
    var currentApplication: Tree = EmptyTree
    var inPattern: Boolean = false
    @inline final def savingInPattern[A](body: => A): A = {
      val saved = inPattern
      try body finally inPattern = saved
    }

    var checkedCombinations = Set[List[Type]]()

    // only one overloaded alternative is allowed to define default arguments
    private def checkOverloadedRestrictions(clazz: Symbol, defaultClass: Symbol): Unit = {
      // Using the default getters (such as methodName$default$1) as a cheap way of
      // finding methods with default parameters. This way, we can limit the members to
      // those with the DEFAULTPARAM flag, and infer the methods. Looking for the methods
      // directly requires inspecting the parameter list of every one. That modification
      // shaved 95% off the time spent in this method.
      val defaultGetters     = defaultClass.info.findMembers(excludedFlags = PARAM, requiredFlags = DEFAULTPARAM)
      val defaultMethodNames = defaultGetters map (sym => nme.defaultGetterToMethod(sym.name))

      defaultMethodNames.toList.distinct foreach { name =>
        val methods      = clazz.info.findMember(name, 0L, requiredFlags = METHOD, stableOnly = false).alternatives
        def hasDefaultParam(tpe: Type): Boolean = tpe match {
          case MethodType(params, restpe) => (params exists (_.hasDefault)) || hasDefaultParam(restpe)
          case _                          => false
        }
        val haveDefaults = methods filter (
          if (settings.isScala211)
             (sym => mexists(sym.info.paramss)(_.hasDefault) && !nme.isProtectedAccessorName(sym.name))
          else
            (sym => hasDefaultParam(sym.info) && !nme.isProtectedAccessorName(sym.name))
        )

        if (haveDefaults.lengthCompare(1) > 0) {
          val owners = haveDefaults map (_.owner)
           // constructors of different classes are allowed to have defaults
          if (haveDefaults.exists(x => !x.isConstructor) || owners.distinct.size < haveDefaults.size) {
            unit.error(clazz.pos,
              "in "+ clazz +
              ", multiple overloaded alternatives of "+ haveDefaults.head +
              " define default arguments" + (
                if (owners.forall(_ == clazz)) "."
                else ".\nThe members with defaults are defined in "+owners.map(_.fullLocationString).mkString("", " and ", ".")
              )
            )
          }
        }
      }

      // Check for doomed attempt to overload applyDynamic
      if (clazz isSubClass DynamicClass) {
        for ((_, m1 :: m2 :: _) <- (clazz.info member nme.applyDynamic).alternatives groupBy (_.typeParams.length)) {
          unit.error(m1.pos, "implementation restriction: applyDynamic cannot be overloaded except by methods with different numbers of type parameters, e.g. applyDynamic[T1](method: String)(arg: T1) and applyDynamic[T1, T2](method: String)(arg1: T1, arg2: T2)")
        }
      }

      // This has become noisy with implicit classes.
      if (settings.lint && settings.developer) {
        clazz.info.decls filter (x => x.isImplicit && x.typeParams.nonEmpty) foreach { sym =>
          // implicit classes leave both a module symbol and a method symbol as residue
          val alts = clazz.info.decl(sym.name).alternatives filterNot (_.isModule)
          if (alts.size > 1)
            alts foreach (x => unit.warning(x.pos, "parameterized overloaded implicit methods are not visible as view bounds"))
        }
      }
    }

// Override checking ------------------------------------------------------------

    /** Add bridges for vararg methods that extend Java vararg methods
     */
    def addVarargBridges(clazz: Symbol): List[Tree] = {
      // This is quite expensive, so attempt to skip it completely.
      // Insist there at least be a java-defined ancestor which
      // defines a varargs method. TODO: Find a cheaper way to exclude.
      if (inheritsJavaVarArgsMethod(clazz)) {
        log("Found java varargs ancestor in " + clazz.fullLocationString + ".")
        val self = clazz.thisType
        val bridges = new ListBuffer[Tree]

        def varargBridge(member: Symbol, bridgetpe: Type): Tree = {
          log(s"Generating varargs bridge for ${member.fullLocationString} of type $bridgetpe")

          val newFlags = (member.flags | VBRIDGE | ARTIFACT) & ~PRIVATE
          val bridge   = member.cloneSymbolImpl(clazz, newFlags) setPos clazz.pos
          bridge.setInfo(bridgetpe.cloneInfo(bridge))
          clazz.info.decls enter bridge

          val params  = bridge.paramss.head
          val elemtp  = params.last.tpe.typeArgs.head
          val idents  = params map Ident
          val lastarg = gen.wildcardStar(gen.mkWrapArray(idents.last, elemtp))
          val body    = Apply(Select(This(clazz), member), idents.init :+ lastarg)

          localTyper typed DefDef(bridge, body)
        }

        // For all concrete non-private members (but: see below) that have a (Scala) repeated
        //   parameter: compute the corresponding method type `jtpe` with a Java repeated parameter
        //   if a method with type `jtpe` exists and that method is not a varargs bridge
        //   then create a varargs bridge of type `jtpe` that forwards to the
        //   member method with the Scala vararg type.
        //
        // @PP: Can't call nonPrivateMembers because we will miss refinement members,
        //   which have been marked private. See SI-4729.
        for (member <- nonTrivialMembers(clazz)) {
          log(s"Considering $member for java varargs bridge in $clazz")
          if (!member.isDeferred && member.isMethod && hasRepeatedParam(member.info)) {
            val inherited = clazz.info.nonPrivateMemberAdmitting(member.name, VBRIDGE)

            // Delaying calling memberType as long as possible
            if (inherited.exists) {
              val jtpe = toJavaRepeatedParam(self memberType member)
              // this is a bit tortuous: we look for non-private members or bridges
              // if we find a bridge everything is OK. If we find another member,
              // we need to create a bridge
              val inherited1 = inherited filter (sym => !(sym hasFlag VBRIDGE) && (self memberType sym matches jtpe))
              if (inherited1.exists)
                bridges += varargBridge(member, jtpe)
            }
          }
        }

        if (bridges.size > 0)
          log(s"Adding ${bridges.size} bridges for methods extending java varargs.")

        bridges.toList
      }
      else Nil
    }

    /** 1. Check all members of class `clazz` for overriding conditions.
     *  That is for overriding member M and overridden member O:
     *
     *    1.1. M must have the same or stronger access privileges as O.
     *    1.2. O must not be final.
     *    1.3. O is deferred, or M has `override` modifier.
     *    1.4. If O is stable, then so is M.
     *     // @M: LIFTED 1.5. Neither M nor O are a parameterized type alias
     *    1.6. If O is a type alias, then M is an alias of O.
     *    1.7. If O is an abstract type then
     *       1.7.1 either M is an abstract type, and M's bounds are sharper than O's bounds.
     *             or M is a type alias or class which conforms to O's bounds.
     *       1.7.2 higher-order type arguments must respect bounds on higher-order type parameters  -- @M
     *              (explicit bounds and those implied by variance annotations) -- @see checkKindBounds
     *    1.8. If O and M are values, then
     *    1.8.1  M's type is a subtype of O's type, or
     *    1.8.2  M is of type []S, O is of type ()T and S <: T, or
     *    1.8.3  M is of type ()S, O is of type []T and S <: T, or
     *    1.9.  If M is a macro def, O cannot be deferred unless there's a concrete method overriding O.
     *    1.10. If M is not a macro def, O cannot be a macro def.
     *  2. Check that only abstract classes have deferred members
     *  3. Check that concrete classes do not have deferred definitions
     *     that are not implemented in a subclass.
     *  4. Check that every member with an `override` modifier
     *     overrides some other member.
     */
    private def checkAllOverrides(clazz: Symbol, typesOnly: Boolean = false) {
      val self = clazz.thisType
      def classBoundAsSeen(tp: Type) = {
        tp.typeSymbol.classBound.asSeenFrom(self, tp.typeSymbol.owner)
      }

      case class MixinOverrideError(member: Symbol, msg: String)

      val mixinOverrideErrors = new ListBuffer[MixinOverrideError]()

      def printMixinOverrideErrors() {
        mixinOverrideErrors.toList match {
          case List() =>
          case List(MixinOverrideError(_, msg)) =>
            unit.error(clazz.pos, msg)
          case MixinOverrideError(member, msg) :: others =>
            val others1 = others.map(_.member.name.decode).filter(member.name.decode != _).distinct
            unit.error(
              clazz.pos,
              msg+(if (others1.isEmpty) ""
                   else ";\n other members with override errors are: "+(others1 mkString ", ")))
        }
      }

      def infoString(sym: Symbol) = infoString0(sym, sym.owner != clazz)
      def infoStringWithLocation(sym: Symbol) = infoString0(sym, true)

      def infoString0(sym: Symbol, showLocation: Boolean) = {
        val sym1 = analyzer.underlyingSymbol(sym)
        sym1.toString() +
        (if (showLocation)
          sym1.locationString +
          (if (sym1.isAliasType) ", which equals "+self.memberInfo(sym1)
           else if (sym1.isAbstractType) " with bounds"+self.memberInfo(sym1)
           else if (sym1.isModule) ""
           else if (sym1.isTerm) " of type "+self.memberInfo(sym1)
           else "")
         else "")
      }

      /* Check that all conditions for overriding `other` by `member`
       * of class `clazz` are met.
       */
      def checkOverride(pair: SymbolPair) {
        import pair._
        val member   = low
        val other    = high
        def memberTp = lowType
        def otherTp  = highType

        debuglog("Checking validity of %s overriding %s".format(member.fullLocationString, other.fullLocationString))

        def noErrorType = !pair.isErroneous
        def isRootOrNone(sym: Symbol) = sym != null && sym.isRoot || sym == NoSymbol
        def isNeitherInClass = member.owner != pair.base && other.owner != pair.base

        def objectOverrideErrorMsg = (
          "overriding " + high.fullLocationString + " with " + low.fullLocationString + ":\n" +
          "an overriding object must conform to the overridden object's class bound" +
          analyzer.foundReqMsg(pair.lowClassBound, pair.highClassBound)
        )

        def overrideErrorMsg(msg: String): String = {
          val isConcreteOverAbstract =
            (other.owner isSubClass member.owner) && other.isDeferred && !member.isDeferred
          val addendum =
            if (isConcreteOverAbstract)
              ";\n (Note that %s is abstract,\n  and is therefore overridden by concrete %s)".format(
                infoStringWithLocation(other),
                infoStringWithLocation(member)
              )
            else if (settings.debug)
              analyzer.foundReqMsg(member.tpe, other.tpe)
            else ""

          "overriding %s;\n %s %s%s".format(
            infoStringWithLocation(other), infoString(member), msg, addendum
          )
        }
        def emitOverrideError(fullmsg: String) {
          if (member.owner == clazz) unit.error(member.pos, fullmsg)
          else mixinOverrideErrors += new MixinOverrideError(member, fullmsg)
        }

        def overrideError(msg: String) {
          if (noErrorType)
            emitOverrideError(overrideErrorMsg(msg))
        }

        def overrideTypeError() {
          if (noErrorType) {
            emitOverrideError(
              if (member.isModule && other.isModule) objectOverrideErrorMsg
              else overrideErrorMsg("has incompatible type")
            )
          }
        }

        def overrideAccessError() {
          val otherAccess = accessFlagsToString(other)
          overrideError("has weaker access privileges; it should be "+ (if (otherAccess == "") "public" else "at least "+otherAccess))
        }

        //Console.println(infoString(member) + " overrides " + infoString(other) + " in " + clazz);//DEBUG

        // return if we already checked this combination elsewhere
        if (member.owner != clazz) {
          def deferredCheck        = member.isDeferred || !other.isDeferred
          def subOther(s: Symbol)  = s isSubClass other.owner
          def subMember(s: Symbol) = s isSubClass member.owner

          if (subOther(member.owner) && deferredCheck) {
            //Console.println(infoString(member) + " shadows1 " + infoString(other) " in " + clazz);//DEBUG
            return
          }
          if (clazz.parentSymbols exists (p => subOther(p) && subMember(p) && deferredCheck)) {
            //Console.println(infoString(member) + " shadows2 " + infoString(other) + " in " + clazz);//DEBUG
            return
          }
          if (clazz.parentSymbols forall (p => subOther(p) == subMember(p))) {
            //Console.println(infoString(member) + " shadows " + infoString(other) + " in " + clazz);//DEBUG
            return
          }
        }

        /* Is the intersection between given two lists of overridden symbols empty? */
        def intersectionIsEmpty(syms1: List[Symbol], syms2: List[Symbol]) =
          !(syms1 exists (syms2 contains _))

        if (typesOnly) checkOverrideTypes()
        else {
          // o: public | protected        | package-protected  (aka java's default access)
          // ^-may be overridden by member with access privileges-v
          // m: public | public/protected | public/protected/package-protected-in-same-package-as-o

          if (member.isPrivate) // (1.1)
            overrideError("has weaker access privileges; it should not be private")

          // todo: align accessibility implication checking with isAccessible in Contexts
          val ob = other.accessBoundary(member.owner)
          val mb = member.accessBoundary(member.owner)
          def isOverrideAccessOK = member.isPublic || {      // member is public, definitely same or relaxed access
            (!other.isProtected || member.isProtected) &&    // if o is protected, so is m
            ((!isRootOrNone(ob) && ob.hasTransOwner(mb)) ||  // m relaxes o's access boundary
              other.isJavaDefined)                           // overriding a protected java member, see #3946
          }
          if (!isOverrideAccessOK) {
            overrideAccessError()
          } else if (other.isClass) {
            overrideError("cannot be used here - class definitions cannot be overridden")
          } else if (!other.isDeferred && member.isClass) {
            overrideError("cannot be used here - classes can only override abstract types")
          } else if (other.isEffectivelyFinal) { // (1.2)
            overrideError("cannot override final member")
          } else if (!other.isDeferredOrDefault && !other.hasFlag(DEFAULTMETHOD) && !member.isAnyOverride && !member.isSynthetic) { // (*)
            // (*) Synthetic exclusion for (at least) default getters, fixes SI-5178. We cannot assign the OVERRIDE flag to
            // the default getter: one default getter might sometimes override, sometimes not. Example in comment on ticket.
              if (isNeitherInClass && !(other.owner isSubClass member.owner))
                emitOverrideError(
                  clazz + " inherits conflicting members:\n  "
                    + infoStringWithLocation(other) + "  and\n  " + infoStringWithLocation(member)
                    + "\n(Note: this can be resolved by declaring an override in " + clazz + ".)"
                )
              else
                overrideError("needs `override' modifier")
          } else if (other.isAbstractOverride && other.isIncompleteIn(clazz) && !member.isAbstractOverride) {
            overrideError("needs `abstract override' modifiers")
          }
          else if (member.isAnyOverride && (other hasFlag ACCESSOR) && other.accessed.isVariable && !other.accessed.isLazy) {
            // !?! this is not covered by the spec. We need to resolve this either by changing the spec or removing the test here.
            // !!! is there a !?! convention? I'm !!!ing this to make sure it turns up on my searches.
            if (!settings.overrideVars)
              overrideError("cannot override a mutable variable")
          }
          else if (member.isAnyOverride &&
                     !(member.owner.thisType.baseClasses exists (_ isSubClass other.owner)) &&
                     !member.isDeferred && !other.isDeferred &&
                     intersectionIsEmpty(member.extendedOverriddenSymbols, other.extendedOverriddenSymbols)) {
            overrideError("cannot override a concrete member without a third member that's overridden by both "+
                          "(this rule is designed to prevent ``accidental overrides'')")
          } else if (other.isStable && !member.isStable) { // (1.4)
            overrideError("needs to be a stable, immutable value")
          } else if (member.isValue && member.isLazy &&
                     other.isValue && !other.isSourceMethod && !other.isDeferred && !other.isLazy) {
            overrideError("cannot override a concrete non-lazy value")
          } else if (other.isValue && other.isLazy && !other.isSourceMethod && !other.isDeferred &&
                     member.isValue && !member.isLazy) {
            overrideError("must be declared lazy to override a concrete lazy value")
          } else if (other.isDeferred && member.isTermMacro && member.extendedOverriddenSymbols.forall(_.isDeferred)) { // (1.9)
            overrideError("cannot be used here - term macros cannot override abstract methods")
          } else if (other.isTermMacro && !member.isTermMacro) { // (1.10)
            overrideError("cannot be used here - only term macros can override term macros")
          } else {
            checkOverrideTypes()
            checkOverrideDeprecated()
            if (settings.warnNullaryOverride) {
              if (other.paramss.isEmpty && !member.paramss.isEmpty) {
                unit.warning(member.pos, "non-nullary method overrides nullary method")
              }
            }
          }
        }

        //if (!member.typeParams.isEmpty) (1.5)  @MAT
        //  overrideError("may not be parameterized");
        //if (!other.typeParams.isEmpty)  (1.5)   @MAT
        //  overrideError("may not override parameterized type");
        // @M: substSym
        def checkOverrideAlias() {
          // Important: first check the pair has the same kind, since the substitution
          // carries high's type parameter's bounds over to low, so that
          // type equality doesn't consider potentially different bounds on low/high's type params.
          // In b781e25afe this went from using memberInfo to memberType (now lowType/highType), tested by neg/override.scala.
          // TODO: was that the right fix? it seems type alias's RHS should be checked by looking at the symbol's info
          if (pair.sameKind && lowType.substSym(low.typeParams, high.typeParams) =:= highType) ()
          else overrideTypeError() // (1.6)
        }
        //if (!member.typeParams.isEmpty) // (1.7)  @MAT
        //  overrideError("may not be parameterized");
        def checkOverrideAbstract() {
          if (!(highInfo.bounds containsType lowType)) { // (1.7.1)
            overrideTypeError(); // todo: do an explaintypes with bounds here
            explainTypes(_.bounds containsType _, highInfo, lowType)
          }
          // check overriding (abstract type --> abstract type or abstract type --> concrete type member (a type alias))
          // making an abstract type member concrete is like passing a type argument
          typer.infer.checkKindBounds(high :: Nil, lowType :: Nil, rootType, low.owner) match { // (1.7.2)
            case Nil        =>
            case kindErrors =>
              unit.error(member.pos,
                "The kind of "+member.keyString+" "+member.varianceString + member.nameString+
                " does not conform to the expected kind of " + other.defString + other.locationString + "." +
                kindErrors.toList.mkString("\n", ", ", ""))
          }
          // check a type alias's RHS corresponds to its declaration
          // this overlaps somewhat with validateVariance
          if (low.isAliasType) {
            typer.infer.checkKindBounds(low :: Nil, lowType.normalize :: Nil, rootType, low.owner) match {
              case Nil        =>
              case kindErrors =>
                unit.error(member.pos,
                  "The kind of the right-hand side "+lowType.normalize+" of "+low.keyString+" "+
                  low.varianceString + low.nameString+ " does not conform to its expected kind."+
                  kindErrors.toList.mkString("\n", ", ", ""))
            }
          }
          else if (low.isAbstractType && lowType.isVolatile && !highInfo.bounds.hi.isVolatile)
            overrideError("is a volatile type; cannot override a type with non-volatile upper bound")
        }
        def checkOverrideTerm() {
          other.cookJavaRawInfo() // #2454
          if (!overridesTypeInPrefix(lowType, highType, rootType)) { // 8
            overrideTypeError()
            explainTypes(lowType, highType)
          }
          if (low.isStable && !highType.isVolatile) {
            if (lowType.isVolatile)
              overrideError("has a volatile type; cannot override a member with non-volatile type")
            else lowType.normalize.resultType match {
              case rt: RefinedType if !(rt =:= highType) && !(checkedCombinations contains rt.parents) =>
                // might mask some inconsistencies -- check overrides
                checkedCombinations += rt.parents
                val tsym = rt.typeSymbol
                if (tsym.pos == NoPosition) tsym setPos member.pos
                checkAllOverrides(tsym, typesOnly = true)
              case _ =>
            }
          }
        }
        def checkOverrideTypes() {
          if (high.isAliasType)         checkOverrideAlias()
          else if (high.isAbstractType) checkOverrideAbstract()
          else if (high.isTerm)         checkOverrideTerm()
        }

        def checkOverrideDeprecated() {
          if (other.hasDeprecatedOverridingAnnotation) {
            val suffix = other.deprecatedOverridingMessage map (": " + _) getOrElse ""
            val msg = s"overriding ${other.fullLocationString} is deprecated$suffix"
            unit.deprecationWarning(member.pos, msg)
          }
        }
      }

      val opc = new overridingPairs.Cursor(clazz)
      while (opc.hasNext) {
        if (!opc.high.isClass)
          checkOverride(opc.currentPair)

        opc.next()
      }
      printMixinOverrideErrors()

      // Verifying a concrete class has nothing unimplemented.
      if (clazz.isConcreteClass && !typesOnly) {
        val abstractErrors = new ListBuffer[String]
        def abstractErrorMessage =
          // a little formatting polish
          if (abstractErrors.size <= 2) abstractErrors mkString " "
          else abstractErrors.tail.mkString(abstractErrors.head + ":\n", "\n", "")

        def abstractClassError(mustBeMixin: Boolean, msg: String) {
          def prelude = (
            if (clazz.isAnonymousClass || clazz.isModuleClass) "object creation impossible"
            else if (mustBeMixin) clazz + " needs to be a mixin"
            else clazz + " needs to be abstract"
          ) + ", since"

          if (abstractErrors.isEmpty) abstractErrors ++= List(prelude, msg)
          else abstractErrors += msg
        }

        def javaErasedOverridingSym(sym: Symbol): Symbol =
          clazz.tpe.nonPrivateMemberAdmitting(sym.name, BRIDGE).filter(other =>
            !other.isDeferred && other.isJavaDefined && !sym.enclClass.isSubClass(other.enclClass) && {
              // #3622: erasure operates on uncurried types --
              // note on passing sym in both cases: only sym.isType is relevant for uncurry.transformInfo
              // !!! erasure.erasure(sym, uncurry.transformInfo(sym, tp)) gives erreneous of inaccessible type - check whether that's still the case!
              def uncurryAndErase(tp: Type) = erasure.erasure(sym)(uncurry.transformInfo(sym, tp))
              val tp1 = uncurryAndErase(clazz.thisType.memberType(sym))
              val tp2 = uncurryAndErase(clazz.thisType.memberType(other))
              exitingErasure(tp1 matches tp2)
            })

        def ignoreDeferred(member: Symbol) = (
          (member.isAbstractType && !member.isFBounded) || (
            // the test requires exitingErasure so shouldn't be
            // done if the compiler has no erasure phase available
               member.isJavaDefined
            && (currentRun.erasurePhase == NoPhase || javaErasedOverridingSym(member) != NoSymbol)
          )
        )

        // 2. Check that only abstract classes have deferred members
        def checkNoAbstractMembers(): Unit = {
          // Avoid spurious duplicates: first gather any missing members.
          def memberList = clazz.info.nonPrivateMembersAdmitting(VBRIDGE)
          val (missing, rest) = memberList partition (m => m.isDeferredNotDefault && !ignoreDeferred(m))
          // Group missing members by the name of the underlying symbol,
          // to consolidate getters and setters.
          val grouped = missing groupBy (sym => analyzer.underlyingSymbol(sym).name)
          val missingMethods = grouped.toList flatMap {
            case (name, syms) =>
              if (syms exists (_.isSetter)) syms filterNot (_.isGetter)
              else syms
          }

          def stubImplementations: List[String] = {
            // Grouping missing methods by the declaring class
            val regrouped = missingMethods.groupBy(_.owner).toList
            def membersStrings(members: List[Symbol]) = {
              members foreach fullyInitializeSymbol
              members.sortBy(_.name) map (m => m.defStringSeenAs(clazz.tpe_* memberType m) + " = ???")
            }

            if (regrouped.tail.isEmpty)
              membersStrings(regrouped.head._2)
            else (regrouped.sortBy("" + _._1.name) flatMap {
              case (owner, members) =>
                ("// Members declared in " + owner.fullName) +: membersStrings(members) :+ ""
            }).init
          }

          // If there are numerous missing methods, we presume they are aware of it and
          // give them a nicely formatted set of method signatures for implementing.
          if (missingMethods.size > 1) {
            abstractClassError(false, "it has " + missingMethods.size + " unimplemented members.")
            val preface =
              """|/** As seen from %s, the missing signatures are as follows.
                 | *  For convenience, these are usable as stub implementations.
                 | */
                 |""".stripMargin.format(clazz)
            abstractErrors += stubImplementations.map("  " + _ + "\n").mkString(preface, "", "")
            return
          }

          for (member <- missing) {
            def undefined(msg: String) = abstractClassError(false, infoString(member) + " is not defined" + msg)
            val underlying = analyzer.underlyingSymbol(member)

            // Give a specific error message for abstract vars based on why it fails:
            // It could be unimplemented, have only one accessor, or be uninitialized.
            if (underlying.isVariable) {
              val isMultiple = grouped.getOrElse(underlying.name, Nil).size > 1

              // If both getter and setter are missing, squelch the setter error.
              if (member.isSetter && isMultiple) ()
              else undefined(
                if (member.isSetter) "\n(Note that an abstract var requires a setter in addition to the getter)"
                else if (member.isGetter && !isMultiple) "\n(Note that an abstract var requires a getter in addition to the setter)"
                else analyzer.abstractVarMessage(member)
              )
            }
            else if (underlying.isMethod) {
              // If there is a concrete method whose name matches the unimplemented
              // abstract method, and a cursory examination of the difference reveals
              // something obvious to us, let's make it more obvious to them.
              val abstractParams   = underlying.tpe.paramTypes
              val matchingName     = clazz.tpe.nonPrivateMembersAdmitting(VBRIDGE)
              val matchingArity    = matchingName filter { m =>
                !m.isDeferred &&
                (m.name == underlying.name) &&
                (m.tpe.paramTypes.size == underlying.tpe.paramTypes.size) &&
                (m.tpe.typeParams.size == underlying.tpe.typeParams.size)
              }

              matchingArity match {
                // So far so good: only one candidate method
                case Scope(concrete)   =>
                  val mismatches  = abstractParams zip concrete.tpe.paramTypes filterNot { case (x, y) => x =:= y }
                  mismatches match {
                    // Only one mismatched parameter: say something useful.
                    case (pa, pc) :: Nil  =>
                      val abstractSym = pa.typeSymbol
                      val concreteSym = pc.typeSymbol
                      def subclassMsg(c1: Symbol, c2: Symbol) = (
                        ": %s is a subclass of %s, but method parameter types must match exactly.".format(
                          c1.fullLocationString, c2.fullLocationString)
                      )
                      val addendum = (
                        if (abstractSym == concreteSym) {
                          // TODO: what is the optimal way to test for a raw type at this point?
                          // Compilation has already failed so we shouldn't have to worry overmuch
                          // about forcing types.
                          if (underlying.isJavaDefined && pa.typeArgs.isEmpty && abstractSym.typeParams.nonEmpty)
                            ". To implement a raw type, use %s[_]".format(pa)
                          else if (pa.prefix =:= pc.prefix)
                            ": their type parameters differ"
                          else
                            ": their prefixes (i.e. enclosing instances) differ"
                        }
                        else if (abstractSym isSubClass concreteSym)
                          subclassMsg(abstractSym, concreteSym)
                        else if (concreteSym isSubClass abstractSym)
                          subclassMsg(concreteSym, abstractSym)
                        else ""
                      )

                      undefined("\n(Note that %s does not match %s%s)".format(pa, pc, addendum))
                    case xs =>
                      undefined("")
                  }
                case _ =>
                  undefined("")
              }
            }
            else undefined("")
          }

          // Check the remainder for invalid absoverride.
          for (member <- rest ; if (member.isAbstractOverride && member.isIncompleteIn(clazz))) {
            val other = member.superSymbol(clazz)
            val explanation =
              if (other != NoSymbol) " and overrides incomplete superclass member " + infoString(other)
              else ", but no concrete implementation could be found in a base class"

            abstractClassError(true, infoString(member) + " is marked `abstract' and `override'" + explanation)
          }
        }

        // 3. Check that concrete classes do not have deferred definitions
        // that are not implemented in a subclass.
        // Note that this is not the same as (2); In a situation like
        //
        // class C { def m: Int = 0}
        // class D extends C { def m: Int }
        //
        // (3) is violated but not (2).
        def checkNoAbstractDecls(bc: Symbol) {
          for (decl <- bc.info.decls) {
            if (decl.isDeferred && !ignoreDeferred(decl)) {
              val impl = decl.matchingSymbol(clazz.thisType, admit = VBRIDGE)
              if (impl == NoSymbol || (decl.owner isSubClass impl.owner)) {
                abstractClassError(false, "there is a deferred declaration of "+infoString(decl)+
                                   " which is not implemented in a subclass"+analyzer.abstractVarMessage(decl))
              }
            }
          }
          if (bc.superClass hasFlag ABSTRACT)
            checkNoAbstractDecls(bc.superClass)
        }

        checkNoAbstractMembers()
        if (abstractErrors.isEmpty)
          checkNoAbstractDecls(clazz)

        if (abstractErrors.nonEmpty)
          unit.error(clazz.pos, abstractErrorMessage)
      }
      else if (clazz.isTrait && !(clazz isSubClass AnyValClass)) {
        // For non-AnyVal classes, prevent abstract methods in interfaces that override
        // final members in Object; see #4431
        for (decl <- clazz.info.decls) {
          // Have to use matchingSymbol, not a method involving overridden symbols,
          // because the scala type system understands that an abstract method here does not
          // override a concrete method in Object. The jvm, however, does not.
          val overridden = decl.matchingSymbol(ObjectClass, ObjectTpe)
          if (overridden.isFinal)
            unit.error(decl.pos, "trait cannot redefine final method from class AnyRef")
        }
      }

      /* Returns whether there is a symbol declared in class `inclazz`
       * (which must be different from `clazz`) whose name and type
       * seen as a member of `class.thisType` matches `member`'s.
       */
      def hasMatchingSym(inclazz: Symbol, member: Symbol): Boolean = {
        val isVarargs = hasRepeatedParam(member.tpe)
        lazy val varargsType = toJavaRepeatedParam(member.tpe)

        def isSignatureMatch(sym: Symbol) = !sym.isTerm || {
          val symtpe            = clazz.thisType memberType sym
          def matches(tp: Type) = tp matches symtpe

          matches(member.tpe) || (isVarargs && matches(varargsType))
        }
        /* The rules for accessing members which have an access boundary are more
         * restrictive in java than scala.  Since java has no concept of package nesting,
         * a member with "default" (package-level) access can only be accessed by members
         * in the exact same package.  Example:
         *
         *   package a.b;
         *   public class JavaClass { void foo() { } }
         *
         * The member foo() can be accessed only from members of package a.b, and not
         * nested packages like a.b.c.  In the analogous scala class:
         *
         *   package a.b
         *   class ScalaClass { private[b] def foo() = () }
         *
         * The member IS accessible to classes in package a.b.c.  The javaAccessCheck logic
         * is restricting the set of matching signatures according to the above semantics.
         */
        def javaAccessCheck(sym: Symbol) = (
             !inclazz.isJavaDefined                             // not a java defined member
          || !sym.hasAccessBoundary                             // no access boundary
          || sym.isProtected                                    // marked protected in java, thus accessible to subclasses
          || sym.privateWithin == member.enclosingPackageClass  // exact package match
        )
        def classDecls   = inclazz.info.nonPrivateDecl(member.name)
        def matchingSyms = classDecls filter (sym => isSignatureMatch(sym) && javaAccessCheck(sym))

        (inclazz != clazz) && (matchingSyms != NoSymbol)
      }

      // 4. Check that every defined member with an `override` modifier overrides some other member.
      for (member <- clazz.info.decls)
        if (member.isAnyOverride && !(clazz.thisType.baseClasses exists (hasMatchingSym(_, member)))) {
          // for (bc <- clazz.info.baseClasses.tail) Console.println("" + bc + " has " + bc.info.decl(member.name) + ":" + bc.info.decl(member.name).tpe);//DEBUG

          val nonMatching: List[Symbol] = clazz.info.member(member.name).alternatives.filterNot(_.owner == clazz).filterNot(_.isFinal)
          def issueError(suffix: String) = unit.error(member.pos, member.toString() + " overrides nothing" + suffix)
          nonMatching match {
            case Nil =>
              issueError("")
            case ms =>
              val superSigs = ms.map(m => m.defStringSeenAs(clazz.tpe memberType m)).mkString("\n")
              issueError(s".\nNote: the super classes of ${member.owner} contain the following, non final members named ${member.name}:\n${superSigs}")
          }
          member resetFlag (OVERRIDE | ABSOVERRIDE)  // Any Override
        }
    }

  // Basetype Checking --------------------------------------------------------

    /** <ol>
     *    <li> <!-- 1 -->
     *      Check that later type instances in the base-type sequence
     *      are subtypes of earlier type instances of the same mixin.
     *    </li>
     *  </ol>
     */
    private def validateBaseTypes(clazz: Symbol) {
      val seenParents = mutable.HashSet[Type]()
      val seenTypes = new Array[List[Type]](clazz.info.baseTypeSeq.length)
      for (i <- 0 until seenTypes.length)
        seenTypes(i) = Nil

      /* validate all base types of a class in reverse linear order. */
      def register(tp: Type): Unit = {
//        if (clazz.fullName.endsWith("Collection.Projection"))
//            println("validate base type "+tp)
        val baseClass = tp.typeSymbol
        if (baseClass.isClass) {
          val index = clazz.info.baseTypeIndex(baseClass)
          if (index >= 0) {
            if (seenTypes(index) forall (tp1 => !(tp1 <:< tp)))
              seenTypes(index) =
                tp :: (seenTypes(index) filter (tp1 => !(tp <:< tp1)))
          }
        }
        val remaining = tp.parents filterNot seenParents
        seenParents ++= remaining
        remaining foreach register
      }
      register(clazz.tpe)
      for (i <- 0 until seenTypes.length) {
        val baseClass = clazz.info.baseTypeSeq(i).typeSymbol
        seenTypes(i) match {
          case Nil =>
            devWarning(s"base $baseClass not found in basetypes of $clazz. This might indicate incorrect caching of TypeRef#parents.")
          case _ :: Nil =>
            ;// OK
          case tp1 :: tp2 :: _ =>
            unit.error(clazz.pos, "illegal inheritance;\n " + clazz +
                       " inherits different type instances of " + baseClass +
                       ":\n" + tp1 + " and " + tp2)
            explainTypes(tp1, tp2)
            explainTypes(tp2, tp1)
        }
      }
    }

  // Variance Checking --------------------------------------------------------

    object varianceValidator extends VarianceValidator {
      private def tpString(tp: Type) = tp match {
        case ClassInfoType(parents, _, clazz) => "supertype "+intersectionType(parents, clazz.owner)
        case _                                => "type "+tp
      }
      override def issueVarianceError(base: Symbol, sym: Symbol, required: Variance) {
        currentRun.currentUnit.error(base.pos,
          s"${sym.variance} $sym occurs in $required position in ${tpString(base.info)} of $base")
      }
    }

// Forward reference checking ---------------------------------------------------

    class LevelInfo(val outer: LevelInfo) {
      val scope: Scope = if (outer eq null) newScope else newNestedScope(outer.scope)
      var maxindex: Int = Int.MinValue
      var refpos: Position = _
      var refsym: Symbol = _
    }

    private var currentLevel: LevelInfo = null
    private val symIndex = perRunCaches.newMap[Symbol, Int]()

    private def pushLevel() {
      currentLevel = new LevelInfo(currentLevel)
    }

    private def popLevel() {
      currentLevel = currentLevel.outer
    }

    private def enterSyms(stats: List[Tree]) {
      var index = -1
      for (stat <- stats) {
        index = index + 1
        def enterSym(sym: Symbol) = if (sym.isLocalToBlock) {
          currentLevel.scope.enter(sym)
          symIndex(sym) = index
        }

        stat match {
          case DefDef(_, _, _, _, _, _) if stat.symbol.isLazy                 =>
            enterSym(stat.symbol)
          case ClassDef(_, _, _, _) | DefDef(_, _, _, _, _, _) | ModuleDef(_, _, _) | ValDef(_, _, _, _) =>
            //assert(stat.symbol != NoSymbol, stat);//debug
            enterSym(stat.symbol.lazyAccessorOrSelf)
          case _ =>
        }
      }
    }

    private def enterReference(pos: Position, sym: Symbol) {
      if (sym.isLocalToBlock) {
        val e = currentLevel.scope.lookupEntry(sym.name)
        if ((e ne null) && sym == e.sym) {
          var l = currentLevel
          while (l.scope != e.owner) l = l.outer
          val symindex = symIndex(sym)
          if (l.maxindex < symindex) {
            l.refpos = pos
            l.refsym = sym
            l.maxindex = symindex
          }
        }
      }
    }

// Comparison checking -------------------------------------------------------
    object normalizeAll extends TypeMap {
      def apply(tp: Type) = mapOver(tp).normalize
    }

    def checkImplicitViewOptionApply(pos: Position, fn: Tree, args: List[Tree]): Unit = if (settings.lint) (fn, args) match {
      case (tap@TypeApply(fun, targs), List(view: ApplyImplicitView)) if fun.symbol == currentRun.runDefinitions.Option_apply =>
        unit.warning(pos, s"Suspicious application of an implicit view (${view.fun}) in the argument to Option.apply.") // SI-6567
      case _ =>
    }

    private def isObjectOrAnyComparisonMethod(sym: Symbol) = sym match {
      case Object_eq | Object_ne | Object_== | Object_!= | Any_== | Any_!= => true
      case _                                                               => false
    }
    /** Check the sensibility of using the given `equals` to compare `qual` and `other`. */
    private def checkSensibleEquals(pos: Position, qual: Tree, name: Name, sym: Symbol, other: Tree) = {
      def isReferenceOp = sym == Object_eq || sym == Object_ne
      def isNew(tree: Tree) = tree match {
        case Function(_, _) | Apply(Select(New(_), nme.CONSTRUCTOR), _) => true
        case _ => false
      }
      def underlyingClass(tp: Type): Symbol = {
        val sym = tp.widen.typeSymbol
        if (sym.isAbstractType) underlyingClass(sym.info.bounds.hi)
        else sym
      }
      val actual   = underlyingClass(other.tpe)
      val receiver = underlyingClass(qual.tpe)
      def onTrees[T](f: List[Tree] => T) = f(List(qual, other))
      def onSyms[T](f: List[Symbol] => T) = f(List(receiver, actual))

      // @MAT normalize for consistency in error message, otherwise only part is normalized due to use of `typeSymbol`
      def typesString = normalizeAll(qual.tpe.widen)+" and "+normalizeAll(other.tpe.widen)

      /* Symbols which limit the warnings we can issue since they may be value types */
      val isMaybeValue = Set[Symbol](AnyClass, AnyRefClass, AnyValClass, ObjectClass, ComparableClass, JavaSerializableClass)

      // Whether def equals(other: Any) has known behavior: it is the default
      // inherited from java.lang.Object, or it is a synthetically generated
      // case equals.  TODO - more cases are warnable if the target is a synthetic
      // equals.
      def isUsingWarnableEquals = {
        val m = receiver.info.member(nme.equals_)
        ((m == Object_equals) || (m == Any_equals) || isMethodCaseEquals(m))
      }
      def isMethodCaseEquals(m: Symbol) = m.isSynthetic && m.owner.isCase
      def isCaseEquals = isMethodCaseEquals(receiver.info.member(nme.equals_))
      // Whether this == or != is one of those defined in Any/AnyRef or an overload from elsewhere.
      def isUsingDefaultScalaOp = sym == Object_== || sym == Object_!= || sym == Any_== || sym == Any_!=
      def haveSubclassRelationship = (actual isSubClass receiver) || (receiver isSubClass actual)

      // Whether the operands+operator represent a warnable combo (assuming anyrefs)
      // Looking for comparisons performed with ==/!= in combination with either an
      // equals method inherited from Object or a case class synthetic equals (for
      // which we know the logic.)
      def isWarnable           = isReferenceOp || (isUsingDefaultScalaOp && isUsingWarnableEquals)
      def isEitherNullable     = (NullTpe <:< receiver.info) || (NullTpe <:< actual.info)
      def isEitherValueClass   = actual.isDerivedValueClass || receiver.isDerivedValueClass
      def isBoolean(s: Symbol) = unboxedValueClass(s) == BooleanClass
      def isUnit(s: Symbol)    = unboxedValueClass(s) == UnitClass
      def isNumeric(s: Symbol) = isNumericValueClass(unboxedValueClass(s)) || isAnyNumber(s)
      def isScalaNumber(s: Symbol) = s isSubClass ScalaNumberClass
      def isJavaNumber(s: Symbol)  = s isSubClass JavaNumberClass
      // includes java.lang.Number if appropriate [SI-5779]
      def isAnyNumber(s: Symbol)     = isScalaNumber(s) || isJavaNumber(s)
      def isMaybeAnyValue(s: Symbol) = isPrimitiveValueClass(unboxedValueClass(s)) || isMaybeValue(s)
      // used to short-circuit unrelatedTypes check if both sides are special
      def isSpecial(s: Symbol) = isMaybeAnyValue(s) || isAnyNumber(s)
      val nullCount            = onSyms(_ filter (_ == NullClass) size)
      def isNonsenseValueClassCompare = (
           !haveSubclassRelationship
        && isUsingDefaultScalaOp
        && isEitherValueClass
        && !isCaseEquals
      )

      // Have we already determined that the comparison is non-sensible? I mean, non-sensical?
      var isNonSensible = false

      def nonSensibleWarning(what: String, alwaysEqual: Boolean) = {
        val msg = alwaysEqual == (name == nme.EQ || name == nme.eq)
        unit.warning(pos, s"comparing $what using `${name.decode}' will always yield $msg")
        isNonSensible = true
      }
      def nonSensible(pre: String, alwaysEqual: Boolean) =
        nonSensibleWarning(s"${pre}values of types $typesString", alwaysEqual)
      def nonSensiblyEq() = nonSensible("", alwaysEqual = true)
      def nonSensiblyNeq() = nonSensible("", alwaysEqual = false)
      def nonSensiblyNew() = nonSensibleWarning("a fresh object", alwaysEqual = false)

      def unrelatedMsg = name match {
        case nme.EQ | nme.eq => "never compare equal"
        case _               => "always compare unequal"
      }
      def unrelatedTypes() = if (!isNonSensible) {
        val weaselWord = if (isEitherValueClass) "" else " most likely"
        unit.warning(pos, s"$typesString are unrelated: they will$weaselWord $unrelatedMsg")
      }

      if (nullCount == 2) // null == null
        nonSensiblyEq()
      else if (nullCount == 1) {
        if (onSyms(_ exists isPrimitiveValueClass)) // null == 5
          nonSensiblyNeq()
        else if (onTrees( _ exists isNew)) // null == new AnyRef
          nonSensiblyNew()
      }
      else if (isBoolean(receiver)) {
        if (!isBoolean(actual) && !isMaybeValue(actual))    // true == 5
          nonSensiblyNeq()
      }
      else if (isUnit(receiver)) {
        if (isUnit(actual)) // () == ()
          nonSensiblyEq()
        else if (!isUnit(actual) && !isMaybeValue(actual))  // () == "abc"
          nonSensiblyNeq()
      }
      else if (isNumeric(receiver)) {
        if (!isNumeric(actual))
          if (isUnit(actual) || isBoolean(actual) || !isMaybeValue(actual))   // 5 == "abc"
            nonSensiblyNeq()
      }
      else if (isWarnable && !isCaseEquals) {
        if (isNew(qual)) // new X == y
          nonSensiblyNew()
        else if (isNew(other) && (receiver.isEffectivelyFinal || isReferenceOp))   // object X ; X == new Y
          nonSensiblyNew()
        else if (receiver.isEffectivelyFinal && !(receiver isSubClass actual) && !actual.isRefinementClass) {  // object X, Y; X == Y
          if (isEitherNullable)
            nonSensible("non-null ", false)
          else
            nonSensiblyNeq()
        }
      }

      // warn if one but not the other is a derived value class
      // this is especially important to enable transitioning from
      // regular to value classes without silent failures.
      if (isNonsenseValueClassCompare)
        unrelatedTypes()
      // possibleNumericCount is insufficient or this will warn on e.g. Boolean == j.l.Boolean
      else if (isWarnable && nullCount == 0 && !(isSpecial(receiver) && isSpecial(actual))) {
        // better to have lubbed and lost
        def warnIfLubless(): Unit = {
          val common = global.lub(List(actual.tpe, receiver.tpe))
          if (ObjectTpe <:< common)
            unrelatedTypes()
        }
        // warn if actual has a case parent that is not same as receiver's;
        // if actual is not a case, then warn if no common supertype, as below
        if (isCaseEquals) {
          def thisCase = receiver.info.member(nme.equals_).owner
          actual.info.baseClasses.find(_.isCase) match {
            case Some(p) if p != thisCase => nonSensible("case class ", false)
            case None =>
              // stronger message on (Some(1) == None)
              //if (receiver.isCase && receiver.isEffectivelyFinal && !(receiver isSubClass actual)) nonSensiblyNeq()
              //else
              // if a class, it must be super to thisCase (and receiver) since not <: thisCase
              if (!actual.isTrait && !(receiver isSubClass actual)) nonSensiblyNeq()
              else if (!haveSubclassRelationship) warnIfLubless()
            case _ =>
          }
        }
        // warn only if they have no common supertype below Object
        else if (!haveSubclassRelationship) {
          warnIfLubless()
        }
      }
    }
    /** Sensibility check examines flavors of equals. */
    def checkSensible(pos: Position, fn: Tree, args: List[Tree]) = fn match {
      case Select(qual, name @ (nme.EQ | nme.NE | nme.eq | nme.ne)) if args.length == 1 && isObjectOrAnyComparisonMethod(fn.symbol) =>
        checkSensibleEquals(pos, qual, name, fn.symbol, args.head)
      case _ =>
    }

    // SI-6276 warn for `def foo = foo` or `val bar: X = bar`, which come up more frequently than you might think.
    def checkInfiniteLoop(valOrDef: ValOrDefDef) {
      def callsSelf = valOrDef.rhs match {
        case t @ (Ident(_) | Select(This(_), _)) =>
          t hasSymbolWhich (_.accessedOrSelf == valOrDef.symbol)
        case _ => false
      }
      val trivialInifiniteLoop = (
        !valOrDef.isErroneous
     && !valOrDef.symbol.isValueParameter
     && valOrDef.symbol.paramss.isEmpty
     && callsSelf
      )
      if (trivialInifiniteLoop)
        unit.warning(valOrDef.rhs.pos, s"${valOrDef.symbol.fullLocationString} does nothing other than call itself recursively")
    }

// Transformation ------------------------------------------------------------

    /* Convert a reference to a case factory of type `tpe` to a new of the class it produces. */
    def toConstructor(pos: Position, tpe: Type): Tree = {
      val rtpe = tpe.finalResultType
      assert(rtpe.typeSymbol hasFlag CASE, tpe)
      localTyper.typedOperator {
        atPos(pos) {
          Select(New(TypeTree(rtpe)), rtpe.typeSymbol.primaryConstructor)
        }
      }
    }

    override def transformStats(stats: List[Tree], exprOwner: Symbol): List[Tree] = {
      pushLevel()
      try {
        enterSyms(stats)
        var index = -1
        stats flatMap { stat => index += 1; transformStat(stat, index) }
      }
      finally popLevel()
    }

    /** Eliminate ModuleDefs. In all cases the ModuleDef (carrying a module symbol) is
     *  replaced with a ClassDef (carrying the corresponding module class symbol) with additional
     *  trees created as follows:
     *
     *  1) A statically reachable object (either top-level or nested only in objects) receives
     *     no additional trees.
     *  2) An inner object which matches an existing member (e.g. implements an interface)
     *     receives an accessor DefDef to implement the interface.
     *  3) An inner object otherwise receives a private ValDef which declares a module var
     *     (the field which holds the module class - it has a name like Foo$module) and an
     *     accessor for that field. The instance is created lazily, on first access.
     */
    private def eliminateModuleDefs(moduleDef: Tree): List[Tree] = exitingRefchecks {
      val ModuleDef(_, _, impl) = moduleDef
      val module        = moduleDef.symbol
      val site          = module.owner
      val moduleName    = module.name.toTermName
      // The typer doesn't take kindly to seeing this ClassDef; we have to
      // set NoType so it will be ignored.
      val cdef          = ClassDef(module.moduleClass, impl) setType NoType

      // Create the module var unless the immediate owner is a class and
      // the module var already exists there. See SI-5012, SI-6712.
      def findOrCreateModuleVar() = {
        val vsym = (
          if (site.isTerm) NoSymbol
          else site.info decl nme.moduleVarName(moduleName)
        )
        vsym orElse (site newModuleVarSymbol module)
      }
      def newInnerObject() = {
        // Create the module var unless it is already in the module owner's scope.
        // The lookup is on module.enclClass and not module.owner lest there be a
        // nullary method between us and the class; see SI-5012.
        val moduleVar = findOrCreateModuleVar()
        val rhs       = gen.newModule(module, moduleVar.tpe)
        val body      = if (site.isTrait) rhs else gen.mkAssignAndReturn(moduleVar, rhs)
        val accessor  = DefDef(module, body.changeOwner(moduleVar -> module))

        ValDef(moduleVar) :: accessor :: Nil
      }
      def matchingInnerObject() = {
        val newFlags = (module.flags | STABLE) & ~MODULE
        val newInfo  = NullaryMethodType(module.moduleClass.tpe)
        val accessor = site.newMethod(moduleName, module.pos, newFlags) setInfoAndEnter newInfo

        DefDef(accessor, Select(This(site), module)) :: Nil
      }
      val newTrees = cdef :: (
        if (module.isStatic)
          if (module.isOverridingSymbol) matchingInnerObject() else Nil
        else
          newInnerObject()
      )
      transformTrees(newTrees map localTyper.typedPos(moduleDef.pos))
    }

    def transformStat(tree: Tree, index: Int): List[Tree] = tree match {
      case t if treeInfo.isSelfConstrCall(t) =>
        assert(index == 0, index)
        try transform(tree) :: Nil
        finally if (currentLevel.maxindex > 0) {
          // An implementation restriction to avoid VerifyErrors and lazyvals mishaps; see SI-4717
          debuglog("refsym = " + currentLevel.refsym)
          unit.error(currentLevel.refpos, "forward reference not allowed from self constructor invocation")
        }
      case ModuleDef(_, _, _) => eliminateModuleDefs(tree)
      case ValDef(_, _, _, _) =>
        val tree1 = transform(tree) // important to do before forward reference check
        if (tree1.symbol.isLazy) tree1 :: Nil
        else {
          val lazySym = tree.symbol.lazyAccessorOrSelf
          if (lazySym.isLocalToBlock && index <= currentLevel.maxindex) {
            debuglog("refsym = " + currentLevel.refsym)
            unit.error(currentLevel.refpos, "forward reference extends over definition of " + lazySym)
          }
          tree1 :: Nil
        }
      case Import(_, _)                                                                       => Nil
      case DefDef(mods, _, _, _, _, _) if (mods hasFlag MACRO) || (tree.symbol hasFlag MACRO) => Nil
      case _                                                                                  => transform(tree) :: Nil
    }

    /* Check whether argument types conform to bounds of type parameters */
    private def checkBounds(tree0: Tree, pre: Type, owner: Symbol, tparams: List[Symbol], argtps: List[Type]): Unit =
      try typer.infer.checkBounds(tree0, pre, owner, tparams, argtps, "")
      catch {
        case ex: TypeError =>
          unit.error(tree0.pos, ex.getMessage())
          if (settings.explaintypes) {
            val bounds = tparams map (tp => tp.info.instantiateTypeParams(tparams, argtps).bounds)
            (argtps, bounds).zipped map ((targ, bound) => explainTypes(bound.lo, targ))
            (argtps, bounds).zipped map ((targ, bound) => explainTypes(targ, bound.hi))
            ()
          }
      }
    private def isIrrefutable(pat: Tree, seltpe: Type): Boolean = pat match {
      case Apply(_, args) =>
        val clazz = pat.tpe.typeSymbol
        clazz == seltpe.typeSymbol &&
        clazz.isCaseClass &&
        (args corresponds clazz.primaryConstructor.tpe.asSeenFrom(seltpe, clazz).paramTypes)(isIrrefutable)
      case Typed(pat, tpt) =>
        seltpe <:< tpt.tpe
      case Ident(tpnme.WILDCARD) =>
        true
      case Bind(_, pat) =>
        isIrrefutable(pat, seltpe)
      case _ =>
        false
    }

    // Note: if a symbol has both @deprecated and @migration annotations and both
    // warnings are enabled, only the first one checked here will be emitted.
    // I assume that's a consequence of some code trying to avoid noise by suppressing
    // warnings after the first, but I think it'd be better if we didn't have to
    // arbitrarily choose one as more important than the other.
    private def checkUndesiredProperties(sym: Symbol, pos: Position) {
      // If symbol is deprecated, and the point of reference is not enclosed
      // in either a deprecated member or a scala bridge method, issue a warning.
      if (sym.isDeprecated && !currentOwner.ownerChain.exists(x => x.isDeprecated || x.hasBridgeAnnotation)) {
        unit.deprecationWarning(pos, "%s%s is deprecated%s".format(
          sym, sym.locationString, sym.deprecationMessage map (": " + _) getOrElse "")
        )
      }
      // Similar to deprecation: check if the symbol is marked with @migration
      // indicating it has changed semantics between versions.
      if (sym.hasMigrationAnnotation && settings.Xmigration.value != NoScalaVersion) {
        val changed = try
          settings.Xmigration.value < ScalaVersion(sym.migrationVersion.get)
        catch {
          case e : NumberFormatException =>
            unit.warning(pos, s"${sym.fullLocationString} has an unparsable version number: ${e.getMessage()}")
            // if we can't parse the format on the migration annotation just conservatively assume it changed
            true
        }
        if (changed)
          unit.warning(pos, s"${sym.fullLocationString} has changed semantics in version ${sym.migrationVersion.get}:\n${sym.migrationMessage.get}")
      }
      // See an explanation of compileTimeOnly in its scaladoc at scala.annotation.compileTimeOnly.
      if (sym.isCompileTimeOnly) {
        def defaultMsg =
          sm"""Reference to ${sym.fullLocationString} should not have survived past type checking,
              |it should have been processed and eliminated during expansion of an enclosing macro."""
        // The getOrElse part should never happen, it's just here as a backstop.
        unit.error(pos, sym.compileTimeOnlyMessage getOrElse defaultMsg)
      }
    }

    private def checkDelayedInitSelect(qual: Tree, sym: Symbol, pos: Position) = {
      def isLikelyUninitialized = (
           (sym.owner isSubClass DelayedInitClass)
        && !qual.tpe.isInstanceOf[ThisType]
        && sym.accessedOrSelf.isVal
      )
      if (settings.lint.value && isLikelyUninitialized)
        unit.warning(pos, s"Selecting ${sym} from ${sym.owner}, which extends scala.DelayedInit, is likely to yield an uninitialized value")
    }

    private def lessAccessible(otherSym: Symbol, memberSym: Symbol): Boolean = (
         (otherSym != NoSymbol)
      && !otherSym.isProtected
      && !otherSym.isTypeParameterOrSkolem
      && !otherSym.isExistentiallyBound
      && (otherSym isLessAccessibleThan memberSym)
      && (otherSym isLessAccessibleThan memberSym.enclClass)
    )
    private def lessAccessibleSymsInType(other: Type, memberSym: Symbol): List[Symbol] = {
      val extras = other match {
        case TypeRef(pre, _, args) =>
          // checking the prefix here gives us spurious errors on e.g. a private[process]
          // object which contains a type alias, which normalizes to a visible type.
          args filterNot (_ eq NoPrefix) flatMap (tp => lessAccessibleSymsInType(tp, memberSym))
        case _ =>
          Nil
      }
      if (lessAccessible(other.typeSymbol, memberSym)) other.typeSymbol :: extras
      else extras
    }
    private def warnLessAccessible(otherSym: Symbol, memberSym: Symbol) {
      val comparison = accessFlagsToString(memberSym) match {
        case ""   => ""
        case acc  => " is " + acc + " but"
      }
      val cannot =
        if (memberSym.isDeferred) "may be unable to provide a concrete implementation of"
        else "may be unable to override"

      unit.warning(memberSym.pos,
        "%s%s references %s %s.".format(
          memberSym.fullLocationString, comparison,
          accessFlagsToString(otherSym), otherSym
        ) + "\nClasses which cannot access %s %s %s.".format(
          otherSym.decodedName, cannot, memberSym.decodedName)
      )
    }

    /** Warn about situations where a method signature will include a type which
     *  has more restrictive access than the method itself.
     */
    private def checkAccessibilityOfReferencedTypes(tree: Tree) {
      val member = tree.symbol

      def checkAccessibilityOfType(tpe: Type) {
        val inaccessible = lessAccessibleSymsInType(tpe, member)
        // if the unnormalized type is accessible, that's good enough
        if (inaccessible.isEmpty) ()
        // or if the normalized type is, that's good too
        else if ((tpe ne tpe.normalize) && lessAccessibleSymsInType(tpe.dealiasWiden, member).isEmpty) ()
        // otherwise warn about the inaccessible syms in the unnormalized type
        else inaccessible foreach (sym => warnLessAccessible(sym, member))
      }

      // types of the value parameters
      mapParamss(member)(p => checkAccessibilityOfType(p.tpe))
      // upper bounds of type parameters
      member.typeParams.map(_.info.bounds.hi.widen) foreach checkAccessibilityOfType
    }

    private def checkByNameRightAssociativeDef(tree: DefDef) {
      tree match {
        case DefDef(_, name, _, params :: _, _, _) =>
          if (settings.lint && !treeInfo.isLeftAssoc(name.decodedName) && params.exists(p => isByName(p.symbol)))
            unit.warning(tree.pos,
              "by-name parameters will be evaluated eagerly when called as a right-associative infix operator. For more details, see SI-1980.")
        case _ =>
      }
    }

    /** Check that a deprecated val or def does not override a
      * concrete, non-deprecated method.  If it does, then
      * deprecation is meaningless.
      */
    private def checkDeprecatedOvers(tree: Tree) {
      val symbol = tree.symbol
      if (symbol.isDeprecated) {
        val concrOvers =
          symbol.allOverriddenSymbols.filter(sym =>
            !sym.isDeprecated && !sym.isDeferred)
        if(!concrOvers.isEmpty)
          unit.deprecationWarning(
            tree.pos,
            symbol.toString + " overrides concrete, non-deprecated symbol(s):" +
            concrOvers.map(_.name.decode).mkString("    ", ", ", ""))
      }
    }
    private def isRepeatedParamArg(tree: Tree) = currentApplication match {
      case Apply(fn, args) =>
        (    args.nonEmpty
          && (args.last eq tree)
          && (fn.tpe.params.length == args.length)
          && isRepeatedParamType(fn.tpe.params.last.tpe)
        )
      case _ =>
        false
    }

    private def checkTypeRef(tp: Type, tree: Tree, skipBounds: Boolean) = tp match {
      case TypeRef(pre, sym, args) =>
        tree match {
          case tt: TypeTree if tt.original == null => // SI-7783 don't warn about inferred types
                                                      // FIXME: reconcile this check with one in resetAttrs
          case _ => checkUndesiredProperties(sym, tree.pos)
        }
        if(sym.isJavaDefined)
          sym.typeParams foreach (_.cookJavaRawInfo())
        if (!tp.isHigherKinded && !skipBounds)
          checkBounds(tree, pre, sym.owner, sym.typeParams, args)
      case _ =>
    }

    private def checkTypeRefBounds(tp: Type, tree: Tree) = {
      var skipBounds = false
      tp match {
        case AnnotatedType(ann :: Nil, underlying) if ann.symbol == UncheckedBoundsClass =>
          skipBounds = true
          underlying
        case TypeRef(pre, sym, args) =>
          if (!tp.isHigherKinded && !skipBounds)
            checkBounds(tree, pre, sym.owner, sym.typeParams, args)
          tp
        case _ =>
          tp
      }
    }

    private def checkAnnotations(tpes: List[Type], tree: Tree) = tpes foreach { tp =>
      checkTypeRef(tp, tree, skipBounds = false)
      checkTypeRefBounds(tp, tree)
    }
    private def doTypeTraversal(tree: Tree)(f: Type => Unit) = if (!inPattern) tree.tpe foreach f

    private def applyRefchecksToAnnotations(tree: Tree): Unit = {
      def applyChecks(annots: List[AnnotationInfo]) = {
        checkAnnotations(annots map (_.atp), tree)
        transformTrees(annots flatMap (_.args))
      }

      tree match {
        case m: MemberDef =>
          val sym = m.symbol
          applyChecks(sym.annotations)
          // validate implicitNotFoundMessage
          analyzer.ImplicitNotFoundMsg.check(sym) foreach { warn =>
            unit.warning(tree.pos, f"Invalid implicitNotFound message for ${sym}%s${sym.locationString}%s:%n$warn")
          }

        case tpt@TypeTree() =>
          if(tpt.original != null) {
            tpt.original foreach {
              case dc@TypeTreeWithDeferredRefCheck() =>
                applyRefchecksToAnnotations(dc.check()) // #2416
              case _ =>
            }
          }

          doTypeTraversal(tree) {
            case tp @ AnnotatedType(annots, _)  =>
              applyChecks(annots)
            case tp =>
          }
        case _ =>
      }
    }

    private def transformCaseApply(tree: Tree, ifNot: => Unit) = {
      val sym = tree.symbol

      def isClassTypeAccessible(tree: Tree): Boolean = tree match {
        case TypeApply(fun, targs) =>
          isClassTypeAccessible(fun)
        case Select(module, apply) =>
          ( // SI-4859 `CaseClass1().InnerCaseClass2()` must not be rewritten to `new InnerCaseClass2()`;
            //          {expr; Outer}.Inner() must not be rewritten to `new Outer.Inner()`.
            treeInfo.isQualifierSafeToElide(module) &&
            // SI-5626 Classes in refinement types cannot be constructed with `new`. In this case,
            // the companion class is actually not a ClassSymbol, but a reference to an abstract type.
            module.symbol.companionClass.isClass
          )
      }

      val doTransform =
        sym.isSourceMethod &&
        sym.isCase &&
        sym.name == nme.apply &&
        isClassTypeAccessible(tree)

      if (doTransform) {
        tree foreach {
          case i@Ident(_) =>
            enterReference(i.pos, i.symbol) // SI-5390 need to `enterReference` for `a` in `a.B()`
          case _ =>
        }
        toConstructor(tree.pos, tree.tpe)
      }
      else {
        ifNot
        tree
      }
    }

    private def transformApply(tree: Apply): Tree = tree match {
      case Apply(
        Select(qual, nme.filter | nme.withFilter),
        List(Function(
          List(ValDef(_, pname, tpt, _)),
          Match(_, CaseDef(pat1, _, _) :: _))))
        if ((pname startsWith nme.CHECK_IF_REFUTABLE_STRING) &&
            isIrrefutable(pat1, tpt.tpe) && (qual.tpe <:< tree.tpe)) =>

          transform(qual)

      case Apply(fn, args) =>
        // sensicality should be subsumed by the unreachability/exhaustivity/irrefutability
        // analyses in the pattern matcher
        if (!inPattern) {
          checkImplicitViewOptionApply(tree.pos, fn, args)
          checkSensible(tree.pos, fn, args)
        }
        currentApplication = tree
        tree
    }
    private def transformSelect(tree: Select): Tree = {
      val Select(qual, _) = tree
      val sym = tree.symbol

      checkUndesiredProperties(sym, tree.pos)
      checkDelayedInitSelect(qual, sym, tree.pos)

      if (!sym.exists)
        devWarning("Select node has NoSymbol! " + tree + " / " + tree.tpe)
      else if (sym.isLocalToThis)
        varianceValidator.checkForEscape(sym, currentClass)

      def checkSuper(mix: Name) =
        // term should have been eliminated by super accessors
        assert(!(qual.symbol.isTrait && sym.isTerm && mix == tpnme.EMPTY), (qual.symbol, sym, mix))

      transformCaseApply(tree,
        qual match {
          case Super(_, mix)  => checkSuper(mix)
          case _              =>
        }
      )
    }
    private def transformIf(tree: If): Tree = {
      val If(cond, thenpart, elsepart) = tree
      def unitIfEmpty(t: Tree): Tree =
        if (t == EmptyTree) Literal(Constant(())).setPos(tree.pos).setType(UnitTpe) else t

      cond.tpe match {
        case ConstantType(value) =>
          val res = if (value.booleanValue) thenpart else elsepart
          unitIfEmpty(res)
        case _ => tree
      }
    }

    // Warning about nullary methods returning Unit.
    private def checkNullaryMethodReturnType(sym: Symbol) = sym.tpe match {
      case NullaryMethodType(restpe) if restpe.typeSymbol == UnitClass =>
        // this may be the implementation of e.g. a generic method being parameterized
        // on Unit, in which case we had better let it slide.
        val isOk = (
             sym.isGetter
          || (sym.name containsName nme.DEFAULT_GETTER_STRING)
          || sym.allOverriddenSymbols.exists(over => !(over.tpe.resultType =:= sym.tpe.resultType))
        )
        if (!isOk)
          unit.warning(sym.pos, s"side-effecting nullary methods are discouraged: suggest defining as `def ${sym.name.decode}()` instead")
      case _ => ()
    }

    // Verify classes extending AnyVal meet the requirements
    private def checkAnyValSubclass(clazz: Symbol) = {
      if (clazz.isDerivedValueClass) {
        if (clazz.isTrait)
          unit.error(clazz.pos, "Only classes (not traits) are allowed to extend AnyVal")
        else if (clazz.hasAbstractFlag)
          unit.error(clazz.pos, "`abstract' modifier cannot be used with value classes")
      }
    }

    private def checkUnexpandedMacro(t: Tree) =
      if (!t.isDef && t.hasSymbolField && t.symbol.isTermMacro)
        unit.error(t.pos, "macro has not been expanded")

    override def transform(tree: Tree): Tree = {
      val savedLocalTyper = localTyper
      val savedCurrentApplication = currentApplication
      try {
        val sym = tree.symbol

        // Apply RefChecks to annotations. Makes sure the annotations conform to
        // type bounds (bug #935), issues deprecation warnings for symbols used
        // inside annotations.
        applyRefchecksToAnnotations(tree)
        var result: Tree = tree match {
          case DefDef(_, _, _, _, _, EmptyTree) if sym hasAnnotation NativeAttr =>
            sym resetFlag DEFERRED
            transform(deriveDefDef(tree)(_ => typed(gen.mkSysErrorCall("native method stub"))))

          case ValDef(_, _, _, _) | DefDef(_, _, _, _, _, _) =>
            checkDeprecatedOvers(tree)
            checkInfiniteLoop(tree.asInstanceOf[ValOrDefDef])
            if (settings.warnNullaryUnit)
              checkNullaryMethodReturnType(sym)
            if (settings.warnInaccessible) {
              if (!sym.isConstructor && !sym.isEffectivelyFinal && !sym.isSynthetic)
                checkAccessibilityOfReferencedTypes(tree)
            }
            tree match {
              case dd: DefDef => checkByNameRightAssociativeDef(dd)
              case _          =>
            }
            tree

          case Template(parents, self, body) =>
            localTyper = localTyper.atOwner(tree, currentOwner)
            validateBaseTypes(currentOwner)
            checkOverloadedRestrictions(currentOwner, currentOwner)
            // SI-7870 default getters for constructors live in the companion module
            checkOverloadedRestrictions(currentOwner, currentOwner.companionModule)
            val bridges = addVarargBridges(currentOwner)
            checkAllOverrides(currentOwner)
            checkAnyValSubclass(currentOwner)
            if (currentOwner.isDerivedValueClass)
              currentOwner.primaryConstructor makeNotPrivate NoSymbol // SI-6601, must be done *after* pickler!
            if (bridges.nonEmpty) deriveTemplate(tree)(_ ::: bridges) else tree

          case dc@TypeTreeWithDeferredRefCheck() => abort("adapt should have turned dc: TypeTreeWithDeferredRefCheck into tpt: TypeTree, with tpt.original == dc")
          case tpt@TypeTree() =>
            if(tpt.original != null) {
              tpt.original foreach {
                case dc@TypeTreeWithDeferredRefCheck() =>
                  transform(dc.check()) // #2416 -- only call transform to do refchecks, but discard results
                  // tpt has the right type if the deferred checks are ok
                case _ =>
              }
            }

            val existentialParams = new ListBuffer[Symbol]
            var skipBounds = false
            // check all bounds, except those that are existential type parameters
            // or those within typed annotated with @uncheckedBounds
            doTypeTraversal(tree) {
              case tp @ ExistentialType(tparams, tpe) =>
                existentialParams ++= tparams
              case ann: AnnotatedType if ann.hasAnnotation(UncheckedBoundsClass) =>
                // SI-7694 Allow code synthetizers to disable checking of bounds for TypeTrees based on inferred LUBs
                // which might not conform to the constraints.
                skipBounds = true
              case tp: TypeRef =>
                val tpWithWildcards = deriveTypeWithWildcards(existentialParams.toList)(tp)
                checkTypeRef(tpWithWildcards, tree, skipBounds)
              case _ =>
            }
            if (skipBounds) {
              tree.tpe = tree.tpe.map {
                _.filterAnnotations(_.symbol != UncheckedBoundsClass)
              }
            }

            tree

          case TypeApply(fn, args) =>
            checkBounds(tree, NoPrefix, NoSymbol, fn.tpe.typeParams, args map (_.tpe))
            transformCaseApply(tree, ())

          case x @ Apply(_, _)  =>
            transformApply(x)

          case x @ If(_, _, _)  =>
            transformIf(x)

          case New(tpt) =>
            enterReference(tree.pos, tpt.tpe.typeSymbol)
            tree

          case treeInfo.WildcardStarArg(_) if !isRepeatedParamArg(tree) =>
            unit.error(tree.pos, "no `: _*' annotation allowed here\n"+
              "(such annotations are only allowed in arguments to *-parameters)")
            tree

          case Ident(name) =>
            checkUndesiredProperties(sym, tree.pos)
            transformCaseApply(tree,
              if (name != nme.WILDCARD && name != tpnme.WILDCARD_STAR) {
                assert(sym != NoSymbol, "transformCaseApply: name = " + name.debugString + " tree = " + tree + " / " + tree.getClass) //debug
                enterReference(tree.pos, sym)
              }
            )

          case x @ Select(_, _) =>
            transformSelect(x)

          case UnApply(fun, args) =>
            transform(fun) // just make sure we enterReference for unapply symbols, note that super.transform(tree) would not transform(fun)
                           // transformTrees(args) // TODO: is this necessary? could there be forward references in the args??
                           // probably not, until we allow parameterised extractors
            tree


          case _ => tree
        }

        // skip refchecks in patterns....
        result = result match {
          case CaseDef(pat, guard, body) =>
            val pat1 = savingInPattern {
              inPattern = true
              transform(pat)
            }
            treeCopy.CaseDef(tree, pat1, transform(guard), transform(body))
          case LabelDef(_, _, _) if treeInfo.hasSynthCaseSymbol(result) =>
            savingInPattern {
              inPattern = true
              deriveLabelDef(result)(transform)
            }
          case Apply(fun, args) if fun.symbol.isLabel && treeInfo.isSynthCaseSymbol(fun.symbol) =>
            savingInPattern {
              // SI-7756 If we were in a translated pattern, we can now switch out of pattern mode, as the label apply signals
              //         that we are in the user-supplied code in the case body.
              //
              //         Relies on the translation of:
              //            (null: Any) match { case x: List[_] => x; x.reverse; case _ => }'
              //         to:
              //            <synthetic> val x2: List[_] = (x1.asInstanceOf[List[_]]: List[_]);
              //                  matchEnd4({ x2; x2.reverse}) // case body is an argument to a label apply.
              inPattern = false
              super.transform(result)
            }
          case ValDef(_, _, _, _) if treeInfo.hasSynthCaseSymbol(result) =>
            deriveValDef(result)(transform) // SI-7716 Don't refcheck the tpt of the synthetic val that holds the selector.
          case _ =>
            super.transform(result)
        }
        result match {
          case ClassDef(_, _, _, _)
             | TypeDef(_, _, _, _) =>
            if (result.symbol.isLocalToBlock || result.symbol.isTopLevel)
              varianceValidator.traverse(result)
          case tt @ TypeTree() if tt.original != null =>
            varianceValidator.traverse(tt.original) // See SI-7872
          case _ =>
        }

        checkUnexpandedMacro(result)

        result
      } catch {
        case ex: TypeError =>
          if (settings.debug) ex.printStackTrace()
          unit.error(tree.pos, ex.getMessage())
          tree
      } finally {
        localTyper = savedLocalTyper
        currentApplication = savedCurrentApplication
      }
    }
  }
}

Other Scala source code examples

Here is a short list of links related to this Scala RefChecks.scala source code file:

... this post is sponsored by my books ...

#1 New Release!

FP Best Seller

 

new blog posts

 

Copyright 1998-2021 Alvin Alexander, alvinalexander.com
All Rights Reserved.

A percentage of advertising revenue from
pages under the /java/jwarehouse URI on this website is
paid back to open source projects.