|
Scala example source code file (patmat-exprs.scala)
The Scala patmat-exprs.scala source codeimport runtime.ScalaRunTime object Test { val p = new Pattern { } import p._ implicit object IntOps extends NumericOps[Int] { def zero = 0 def one = 1 def add(a: Int, b: Int): Int = a + b def sub(a: Int, b: Int): Int = a - b def mul(a: Int, b: Int): Int = a * b def mul(a: Int, b: Double): Int = (a * b).toInt def div(a: Int, b: Int): Int = a / b def div(a: Int, b: Double): Int = (a / b).toInt def similar(a: Int, b: Int): Boolean = a == b def abs(a: Int): Double = math.abs(a).toDouble def sqr(a: Int): Int = a * a def sqrt(a: Int): Int = math.sqrt(a).toInt def log(a: Int): Int = math.log(a).toInt def exp(a: Int): Int = math.exp(a).toInt def sin(a: Int): Int = math.sin(a).toInt def cos(a: Int): Int = math.cos(a).toInt def fromDouble(a: Double): Int = a.toInt def fromInt(a: Int): Int = a } def main(args: Array[String]): Unit = { println((5: Expr[Int]) + 10 + 15 * 20) } } trait Pattern { // For trying out 2.7.7 // // type Numeric[T] // import java.io.Serializable // // implicit def compat27a[T](x: Iterable[T]) = new { // def iterator: Iterator[T] = x.elements // def sum: Int = 5 // def collect[U](pf: PartialFunction[T, U]): Iterable[U] = x map pf // } /** Function that returns object of the same type it was passed */ trait EndoFunction[-A] { def apply[B <: A](x: B): B } /** Allows for smart construction of EndoFunction from an ordinary function */ object EndoFunction { def apply[A](f: A => A): EndoFunction[A] = new EndoFunction[A] { def apply[B <: A](x: B): B = f(x).asInstanceOf[B] } } trait NumericOps[T] extends Serializable { def zero: T def one: T def two = add(one, one) def three = add(two, one) def add(a: T, b: T): T def add(a: T, b: T, c: T): T = add(a, add(b, c)) def sub(a: T, b: T): T def mul(a: T, b: T): T def mul(a: T, b: Double): T def div(a: T, b: T): T def div(a: T, b: Double): T def similar(a: T, b: T): Boolean def neg(a: T) = sub(zero, a) def abs(a: T): Double def sqr(a: T): T def sqrt(a: T): T def log(a: T): T def exp(a: T): T def sin(a: T): T def cos(a: T): T def tan(a: T): T = div(sin(a), cos(a)) def fromDouble(a: Double): T def fromInt(a: Int): T def sum(terms: Iterable[T]) = terms.foldLeft(zero)(add) def sum(terms: Iterator[T]) = terms.foldLeft(zero)(add) def product(terms: Iterable[T]) = terms.foldLeft(one)(mul) def product(terms: Iterator[T]) = terms.foldLeft(one)(mul) def similar(a: Iterable[T], b: Iterable[T]): Boolean = { val i1 = a.iterator val i2 = b.iterator while (i1.hasNext && i2.hasNext) if (!similar(i1.next, i2.next)) return false; true; } } /** * Simple expression interpreter with some basic symbolic manipulation. * Able to evaluate derivatives. */ trait Expr[T] { import Expr._ /** Evaluates value of the expression. */ def eval(context: Any => Any): T /** Symbolically calculates derivative of this expression. Does not simplify it. */ def derivative(variable: Var[T]): Expr[T] /** Returns arguments of this operator */ def args: Iterable[Expr[_]] /** Transforms arguments of this operator by applying given function. */ def mapArgs(f: EndoFunction[Expr[_]]): Expr[T] /** Transforms this operator and its arguments by applying given function */ def map(f: EndoFunction[Expr[_]]): Expr[T] = f(mapArgs(EndoFunction[Expr[_]](x => x.map(f)))) /** Folds all subexpressions in this expression in depth-first order */ def fold[A](v: A)(f: (A, Expr[_]) => A): A = f(args.foldLeft(v) { (a, b) => b.fold(a)(f) }, this) /** Replaces all occurrences of one subexpression with another one */ def replace(from: Expr[_], to: Expr[_]): Expr[T] = map(EndoFunction[Expr[_]](x => if (x == from) to else x)) /** Returns true if this expression contains given subexpression */ def contains(s: Expr[_]): Boolean = this == s || args.exists(_ contains s) /** Counts number of occurrences of the given subexpression. */ def count(condition: Expr[_] => Boolean): Int = (if (condition(this)) 1 else 0) + args.map(_.count(condition)).sum /** Executes some code for every subexpression in the depth-first order */ def foreach[U](block: Expr[_] => U): Unit = { args.foreach(_.foreach(block)) block(this) } /** Collects subexpressions successfully transformed by the given partial function, in depth-first order. */ def collect[U](f: PartialFunction[Expr[_], U]): List[U] = { val a = args.flatMap(_.collect(f)).toList if (f.isDefinedAt(this)) (f(this) :: a) else a } def leaves: List[Leaf[T]] = collect { case l: Leaf[T] => l } def + (other: Expr[T])(implicit n: NumericOps[T]) = Add(List(this, other)) def - (other: Expr[T])(implicit n: NumericOps[T]) = Sub(this, other) def * (other: Expr[T])(implicit n: NumericOps[T]) = Mul(this, other) def / (other: Expr[T])(implicit n: NumericOps[T]) = Div(this, other) def unary_- (implicit n: NumericOps[T]) = Neg(this) def sqr(implicit n: NumericOps[T]) = Sqr(this) def < (other: Expr[T])(implicit n: NumericOps[T], o: Ordering[T]) = LT(this, other) def <= (other: Expr[T])(implicit n: NumericOps[T], o: Ordering[T]) = LE(this, other) def > (other: Expr[T])(implicit n: NumericOps[T], o: Ordering[T]) = GT(this, other) def >= (other: Expr[T])(implicit n: NumericOps[T], o: Ordering[T]) = GE(this, other) private def generalize(implicit num: NumericOps[T]): Expr[T] = { this match { case Add2(a, b) => Add(a :: b :: Nil) case Add3(a, b, c) => Add(a :: b :: c :: Nil) case Sub(a, b) => Add(a :: Neg(b) :: Nil) case Add(x) => Add(x flatMap { case Neg(Add(y)) => y.map(Neg(_)) case Add(y) => y case y => y :: Nil }) case x => x } } private def specialize(implicit num: NumericOps[T]): Expr[T] = { this match { case Add(Seq(a, b)) => Add2(a, b) case Add(Seq(a, b, c)) => Add3(a, b, c) case x => x } } /** Eliminates common negated components of a sum */ private def reduceComponents(components: List[Expr[T]])(implicit num: NumericOps[T]): List[Expr[T]] = { val pairs = for (a <- components; b <- components if Neg(a) == b || a == Neg(b)) yield (a, b) pairs.foldLeft(components) { (c, pair) => if (c.contains(pair._1) && c.contains(pair._2)) c.diff(pair._1 :: pair._2 :: Nil) else c } } /** Simplifies this expression to make evaluation faster and more accurate. * Performs only one pass. */ private def reduce(implicit num: NumericOps[T]): Expr[T] = { this match { case Add(Seq(Neg(x), Neg(y), Neg(z))) => Neg(Add(List(x, y, z))) case Add(Seq(Mul(x, y), z)) if (x == z) => Mul(x, Add(List(y, One[T]))) case Add(Seq(Mul(x, y), z)) if (y == z) => Mul(y, Add(List(z, One[T]))) case Add(Seq(Mul(x, y), Mul(u, w))) if (x == u) => Mul(x, Add(List(y, w))) case Add(Seq(Mul(x, y), Mul(u, w))) if (y == w) => Mul(y, Add(List(x, u))) case Add(Seq(Add(x), Add(y))) => Add(x.toList ::: y.toList).simplify case Add(Seq(Add(x), y)) => Add(y :: x.toList).simplify case Add(Seq(x, Add(y))) => Add(x :: y.toList).simplify case Add(x) => { val noZeros = x.filter(_ != Zero[T]) val noOnes = noZeros.map { case y: One[_] => Const(num.one); case y => y } val constant = num.sum(noOnes.collect { case c: Const[T] => c.value }) val rest = noOnes.filter(x => !x.isInstanceOf[Const[_]]).toList val reduced = reduceComponents(rest) val args = if (num.similar(constant, num.zero)) reduced else reduced ::: Const(constant) :: Nil args.size match { case 0 => Zero[T] case 1 => args.head case 2 => Add2(args(0), args(1)) case 3 => Add3(args(0), args(1), args(2)) case _ => Add(args) } } case Sub(x: Zero[_], y) => Neg(y) case Sub(x, y: Zero[_]) => x case Sub(x, y) if x == y => Zero[T] case Sub(Mul(x, y), z) if (x == z) => Mul(x, Sub(y, One[T])) case Sub(Mul(x, y), z) if (y == z) => Mul(y, Sub(z, One[T])) case Sub(Mul(x, y), Mul(u, w)) if (x == u) => Mul(x, Sub(y, w)) case Sub(Mul(x, y), Mul(u, w)) if (y == w) => Mul(y, Sub(x, u)) case Mul(x: Zero[_], y) => Zero[T] case Mul(x, y: Zero[_]) => Zero[T] case Mul(x: One[_], y) => y case Mul(x, y: One[_]) => x case Mul(Neg(x: One[_]), y) => Neg(y) case Mul(x, Neg(y: One[_])) => Neg(x) case Mul(x, y) if (x == y) => Sqr(x) case Div(x: Zero[_], y) => Zero[T] // warning: possibly extends domain case Div(x, y: One[_]) => x case Div(Sqr(x), y) if x == y => x case Div(Mul(x, y), z) if (x == z) => y case Div(Mul(x, y), z) if (y == z) => y case Div(Mul(Mul(x, y), z), w) if (x == w) => Mul(y, z) case Div(Mul(Mul(x, y), z), w) if (y == w) => Mul(x, z) case Div(Mul(z, Mul(x, y)), w) if (x == w) => Mul(y, z) case Div(Mul(z, Mul(x, y)), w) if (y == w) => Mul(x, z) case Div(Mul(x, y), Mul(u, w)) if (x == u) => Div(y, w) case Div(Mul(x, y), Mul(u, w)) if (y == w) => Div(x, u) case Div(x: One[_], y) => Inv(y) case Div(x, Sqr(y)) if x == y => Inv(y) case Div(Mul(x, y), Sqr(Mul(u, w))) if x == u && y == w => Inv(Mul(x, y)) case Div(x, y) if x == y => One[T] case Mul(Neg(a), Neg(b)) => Mul(a, b) case Div(Neg(a), Neg(b)) => Div(a, b) case Neg(x: Zero[_]) => Zero[T] case Neg(x: One[_]) => Const(num.neg(num.one)) case Sub(Const(x), Const(y)) => const(num.sub(x, y)) case Mul(Const(x), Const(y)) => const(num.mul(x, y)) case Div(Const(x), Const(y)) => const(num.div(x, y)) case Neg(Const(x)) => const(num.neg(x)) case Sqr(Const(x)) => const(num.sqr(x)) case Mul(Const(x), Mul(Const(y), z)) => Mul(const(num.mul(x, y)), z) case Mul(Const(x), Mul(y, Const(z))) => Mul(const(num.mul(x, z)), y) case Mul(Mul(Const(y), z), Const(x)) => Mul(const(num.mul(x, y)), z) case Mul(Mul(y, Const(z)), Const(x)) => Mul(const(num.mul(x, z)), y) case Const(x) if x == num.one => One[T] case Const(x) if x == num.zero => Zero[T] case Sub(x, Neg(y)) => Add(List(x, y)) case Sub(Neg(x), y) => Neg(Add(List(x, y))) case Neg(Neg(x)) => x case Neg(Mul(a: Const[T], x)) => Mul(const(num.neg(a.value)), x) case Neg(Mul(x, a: Const[T])) => Mul(const(num.neg(a.value)), x) case Neg(Div(Neg(a), b)) => Div(a, b) case Neg(Div(a, Neg(b))) => Div(a, b) case Neg(Mul(Neg(a), b)) => Mul(a, b) case Neg(Mul(a, Neg(b))) => Mul(a, b) case Log(Exp(x)) => x case x => x } } private def optimizeWith(f: Expr[T] => Expr[T]): Expr[T] = { f(mapArgs(EndoFunction[Expr[_]]( a => a match { case x: Expr[T] => x.optimizeWith(f) } ))) } /** Simplifies this expression to make evaluation faster and more accurate.*/ def simplify(implicit num: NumericOps[T]): Expr[T] = { val a1 = optimizeWith(_.generalize) val a2 = a1.optimizeWith(_.generalize) val b = a2.optimizeWith(_.reduce) val c = b.optimizeWith(_.reduce) val d = c.optimizeWith(_.specialize) d } } trait Leaf[T] extends Expr[T] { val args = List[Expr[T]]() def mapArgs(f: EndoFunction[Expr[_]]) = this } trait OneArg[T] extends Expr[T] { val expr: Expr[T] val args = List(expr) } trait TwoArg[T] extends Expr[T] { val left: Expr[T] val right: Expr[T] val args = List(left, right) } trait ManyArg[T] extends Expr[T] /** Marker trait for specifying that you can safely divide by this */ trait NonZero[T] extends Expr[T] case class Const[T](value: T)(implicit num: NumericOps[T]) extends Leaf[T] with NonZero[T] { def derivative(variable: Var[T]) = Zero[T] def eval(f: Any => Any) = value override def toString = value.toString } case class Zero[T] (implicit num: NumericOps[T]) extends Leaf[T] { def derivative(variable: Var[T]) = Zero[T] def eval(f: Any => Any) = num.zero override def toString = "0" } case class One[T] (implicit num: NumericOps[T]) extends Leaf[T] { def derivative(variable: Var[T]) = Zero[T] def eval(f: Any => Any) = num.one override def toString = "1" } abstract class Var[T](implicit num: NumericOps[T]) extends Leaf[T] { def derivative(variable: Var[T]) = if (variable == this) One[T] else Zero[T] def eval(f: Any => Any) = f(this).asInstanceOf[T] } case class NamedVar[T](name: String)(implicit num: NumericOps[T]) extends Var[T] { override lazy val hashCode = ScalaRunTime._hashCode(this) override def toString = name } case class Add[T](args: Iterable[Expr[T]])(implicit num: NumericOps[T]) extends ManyArg[T] { def eval(f: Any => Any) = num.sum(for (i <- args.iterator) yield i.eval(f)) def derivative(v: Var[T]) = Add(args.map(_.derivative(v))) def mapArgs(f: EndoFunction[Expr[_]]) = Add(args map (x => f(x))) override def toString = "(" + args.mkString(" + ") + ")" override lazy val hashCode = ScalaRunTime._hashCode(this); } case class Add2[T](left: Expr[T], right: Expr[T]) (implicit num: NumericOps[T]) extends TwoArg[T] { def eval(f: Any => Any) = num.add(left.eval(f), right.eval(f)) def derivative(v: Var[T]) = Add2(left.derivative(v), right.derivative(v)) def mapArgs(f: EndoFunction[Expr[_]]) = Add2(f(left), f(right)) override def toString = "(" + left + " + " + right + ")" override lazy val hashCode = ScalaRunTime._hashCode(this); } case class Add3[T](a1: Expr[T], a2: Expr[T], a3: Expr[T]) (implicit num: NumericOps[T]) extends ManyArg[T] { val args = List(a1, a2, a3) def eval(f: Any => Any) = num.add(a1.eval(f), a2.eval(f), a3.eval(f)) def derivative(v: Var[T]) = Add3(a1.derivative(v), a2.derivative(v), a3.derivative(v)) def mapArgs(f: EndoFunction[Expr[_]]) = Add3(f(a1), f(a2), f(a3)) override def toString = "(" + a1 + " + " + a2 + " + " + a3 + ")" override lazy val hashCode = ScalaRunTime._hashCode(this); } case class Sub[T](left: Expr[T], right: Expr[T]) (implicit num: NumericOps[T]) extends TwoArg[T] { def derivative(v: Var[T]) = Sub(left.derivative(v), right.derivative(v)) def eval(f: Any => Any) = num.sub(left.eval(f), right.eval(f)) def mapArgs(f: EndoFunction[Expr[_]]) = Sub(f(left), f(right)) override def toString = "(" + left + " - " + right + ")" override lazy val hashCode = ScalaRunTime._hashCode(this); } case class Neg[T](expr: Expr[T]) (implicit num: NumericOps[T]) extends OneArg[T] { def derivative(v: Var[T]) = Neg(expr.derivative(v)) def eval(f: Any => Any) = num.neg(expr.eval(f)) def mapArgs(f: EndoFunction[Expr[_]]) = Neg(f(expr)) override def toString = "(-" + expr + ")" override lazy val hashCode = ScalaRunTime._hashCode(this); } case class Mul[T](left: Expr[T], right: Expr[T]) (implicit num: NumericOps[T]) extends TwoArg[T] { def derivative(v: Var[T]) = Add(List( Mul(left, right.derivative(v)), Mul(right, left.derivative(v)))) def eval(f: Any => Any) = num.mul(left.eval(f), right.eval(f)) def mapArgs(f: EndoFunction[Expr[_]]) = Mul(f(left), f(right)) override def toString = "(" + left + " * " + right + ")" override lazy val hashCode = ScalaRunTime._hashCode(this); } case class Div[T](left: Expr[T], right: Expr[T]) (implicit num: NumericOps[T]) extends TwoArg[T] { // [f(x) / g(x)]' = [f(x) * 1 / g(x)]' = f'(x) * 1 / g(x) + f(x) * [1 / g(x)]' = // f'(x) / g(x) + f(x) * [-1 / g(x) ^ 2] * g'(x) = (f'(x) * g(x) - f(x) * g'(x)) / g(x)^2 def derivative(v: Var[T]) = Div( Sub( Mul(left.derivative(v), right), Mul(left, right.derivative(v))), Sqr(right) ) def eval(f: Any => Any) = num.div(left.eval(f), right.eval(f)) def mapArgs(f: EndoFunction[Expr[_]]) = Div(f(left), f(right)) override def toString = "(" + left + " / " + right + ")" override lazy val hashCode = ScalaRunTime._hashCode(this); } case class Inv[T](expr: Expr[T])(implicit num: NumericOps[T]) extends OneArg[T] { // [1 / f(x)]' = - f'(x) / f(x) ^ 2 def derivative(v: Var[T]) = Neg(Div(expr.derivative(v), Sqr(expr))) def eval(f: Any => Any) = num.div(num.one, expr.eval(f)) def mapArgs(f: EndoFunction[Expr[_]]) = Inv(f(expr)) override def toString = "(1 / " + expr + ")" override lazy val hashCode = ScalaRunTime._hashCode(this); } case class Sqr[T](expr: Expr[T])(implicit num: NumericOps[T]) extends OneArg[T] { // [f(x) ^ 2]' = 2 * f(x) * f'(x) def derivative(v: Var[T]) = Mul(Mul(Const(num.two), expr), expr.derivative(v)) def eval(f: Any => Any) = num.sqr(expr.eval(f)) def mapArgs(f: EndoFunction[Expr[_]]) = Sqr(f(expr)) override def toString = expr + " ^ 2" override lazy val hashCode = ScalaRunTime._hashCode(this); } case class Log[T](expr: Expr[T])(implicit num: NumericOps[T]) extends OneArg[T] { def derivative(v: Var[T]) = Div(expr.derivative(v), expr) def eval(f: Any => Any) = num.log(expr.eval(f)) def mapArgs(f: EndoFunction[Expr[_]]) = Log(f(expr)) override def toString = "log(" + expr + ")" override lazy val hashCode = ScalaRunTime._hashCode(this); } case class Exp[T](expr: Expr[T])(implicit num: NumericOps[T]) extends OneArg[T] { def derivative(v: Var[T]) = Mul(expr.derivative(v), Exp(expr)) def eval(f: Any => Any) = num.exp(expr.eval(f)) def mapArgs(f: EndoFunction[Expr[_]]) = Exp(f(expr)) override def toString = "exp(" + expr + ")" override lazy val hashCode = ScalaRunTime._hashCode(this); } case class Sqrt[T](expr: Expr[T])(implicit num: NumericOps[T]) extends OneArg[T] { def derivative(v: Var[T]) = Neg(Div(expr.derivative(v), Sqrt(expr))) def eval(f: Any => Any) = num.sqrt(expr.eval(f)) def mapArgs(f: EndoFunction[Expr[_]]) = Sqrt(f(expr)) override def toString = "sqrt(" + expr + ")" override lazy val hashCode = ScalaRunTime._hashCode(this); } case class Sin[T](expr: Expr[T])(implicit num: NumericOps[T]) extends OneArg[T] { def derivative(v: Var[T]) = Mul(expr.derivative(v), Cos(expr)) def eval(f: Any => Any) = num.sin(expr.eval(f)) def mapArgs(f: EndoFunction[Expr[_]]) = Sin(f(expr)) override def toString = "sin(" + expr + ")" override lazy val hashCode = ScalaRunTime._hashCode(this); } case class Cos[T](expr: Expr[T])(implicit num: NumericOps[T]) extends OneArg[T] { def derivative(v: Var[T]) = Neg(Mul(expr.derivative(v), Sin(expr))) def eval(f: Any => Any) = num.cos(expr.eval(f)) def mapArgs(f: EndoFunction[Expr[_]]) = Cos(f(expr)) override def toString = "cos(" + expr + ")" override lazy val hashCode = ScalaRunTime._hashCode(this); } abstract class Compare[T](left: Expr[T], right: Expr[T], cmp: (T, T) => Boolean)(implicit num: NumericOps[T]) extends Expr[Boolean] { def derivative(v: Var[Boolean]) = throw new IllegalStateException("Derivative of Boolean not allowed") def eval(f: Any => Any) = cmp(left.eval(f), right.eval(f)) val args = List(left, right) } case class LE[T](left: Expr[T], right: Expr[T])(implicit num: NumericOps[T], ord: Ordering[T]) extends Compare[T](left, right, ord.compare(_, _) <= 0) { def mapArgs(f: EndoFunction[Expr[_]]) = LE( f(left), f(right)) override def toString = left.toString + " <= " + right.toString } case class LT[T](left: Expr[T], right: Expr[T])(implicit num: NumericOps[T], ord: Ordering[T]) extends Compare[T](left, right, ord.compare(_, _) < 0) { def mapArgs(f: EndoFunction[Expr[_]]) = LT( f(left), f(right)) override def toString = left.toString + " < " + right.toString } case class GE[T](left: Expr[T], right: Expr[T])(implicit num: NumericOps[T], ord: Ordering[T]) extends Compare[T](left, right, ord.compare(_, _) >= 0) { def mapArgs(f: EndoFunction[Expr[_]]) = GE( f(left), f(right)) override def toString = left.toString + " >= " + right.toString } case class GT[T](left: Expr[T], right: Expr[T])(implicit num: NumericOps[T], ord: Ordering[T]) extends Compare[T](left, right, ord.compare(_, _) > 0) { def mapArgs(f: EndoFunction[Expr[_]]) = GT( f(left), f(right)) override def toString = left.toString + " > " + right.toString } case class IfElse[T <: Numeric[T]] (condition: Expr[Boolean], left: Expr[T], right: Expr[T])(implicit num: NumericOps[T]) extends Expr[T] { val args = List(condition, left, right) def derivative(v: Var[T]) = IfElse(condition, left.derivative(v), right.derivative(v)) def eval(f: Any => Any) = if (condition.eval(f)) left.eval(f) else right.eval(f) def mapArgs(f: EndoFunction[Expr[_]]) = IfElse( f(condition).asInstanceOf[Expr[Boolean]], f(left), f(right)) override def toString = "if (" + condition + ")(" + left + ") else (" + right + ")" override lazy val hashCode = ScalaRunTime._hashCode(this); } object Expr { /** Creates a constant expression */ def const[T](value: T)(implicit num: NumericOps[T]): Leaf[T] = if (num.zero == value) Zero[T] else Const(value) implicit def double2Constant[T](d: Double)(implicit num: NumericOps[T]): Leaf[T] = const(num.fromDouble(d)) implicit def float2Constant[T](f: Float)(implicit num: NumericOps[T]): Leaf[T] = const(num.fromDouble(f.toDouble)) implicit def int2Constant[T](i: Int)(implicit num: NumericOps[T]): Leaf[T] = const(num.fromDouble(i.toDouble)) implicit def long2Constant[T](l: Long)(implicit num: NumericOps[T]): Leaf[T] = const(num.fromDouble(l.toDouble)) } } Other Scala examples (source code examples)Here is a short list of links related to this Scala patmat-exprs.scala source code file: |
... this post is sponsored by my books ... | |
#1 New Release! |
FP Best Seller |
Copyright 1998-2024 Alvin Alexander, alvinalexander.com
All Rights Reserved.
A percentage of advertising revenue from
pages under the /java/jwarehouse
URI on this website is
paid back to open source projects.