alvinalexander.com | career | drupal | java | mac | mysql | perl | scala | uml | unix  

Scala example source code file (Bitraverse.scala)

This example Scala source code file (Bitraverse.scala) is included in the alvinalexander.com "Java Source Code Warehouse" project. The intent of this project is to help you "Learn Scala by Example" TM.

Learn more about this Scala project at its project page.

Java - Scala tags/keywords

bitraverse, kleisli, state

The Bitraverse.scala Scala example source code

package scalaz

////
import scalaz.Id.Id

/**
 * A type giving rise to two unrelated [[scalaz.Traverse]]s.
 */
////
trait Bitraverse[F[_, _]] extends Bifunctor[F] with Bifoldable[F] { self =>
  ////

  /** Collect `G`s while applying `f` and `g` in some order. */
  def bitraverseImpl[G[_] : Applicative, A, B, C, D](fab: F[A, B])(f: A => G[C], g: B => G[D]): G[F[C, D]]

  // derived functions

  /**The composition of Bitraverses `F` and `G`, `[x,y]F[G[x,y],G[x,y]]`, is a Bitraverse */
  def compose[G[_, _]](implicit G0: Bitraverse[G]): Bitraverse[λ[(α, β) => F[G[α, β], G[α, β]]]] =
    new CompositionBitraverse[F, G] {
      implicit def F = self
      implicit def G = G0
    }

  /**The product of Bitraverses `F` and `G`, `[x,y](F[x,y], G[x,y])`, is a Bitraverse */
  def product[G[_, _]](implicit G0: Bitraverse[G]): Bitraverse[λ[(α, β) => (F[α, β], G[α, β])]] =
    new ProductBitraverse[F, G] {
      implicit def F = self
      implicit def G = G0
    }

  /** Flipped `bitraverse`. */
  def bitraverseF[G[_] : Applicative, A, B, C, D](f: A => G[C], g: B => G[D]): F[A, B] => G[F[C, D]] =
    bitraverseImpl(_)(f, g)

  def bimap[A, B, C, D](fab: F[A, B])(f: A => C, g: B => D): F[C, D] = {
    bitraverseImpl[Id, A, B, C, D](fab)(f, g)
  }

  /** Extract the Traverse on the first param. */
  def leftTraverse[X]: Traverse[F[?, X]] =
    new LeftTraverse[F, X] {val F = self}

  /** Extract the Traverse on the second param. */
  def rightTraverse[X]: Traverse[F[X, ?]] =
    new RightTraverse[F, X] {val F = self}

  /** Unify the traverse over both params. */
  def uTraverse: Traverse[λ[α => F[α, α]]] =
    new UTraverse[F] {val F = self}

  class Bitraversal[G[_]](implicit G: Applicative[G]) {
    def run[A,B,C,D](fa: F[A,B])(f: A => G[C])(g: B => G[D]): G[F[C, D]] = bitraverseImpl[G,A,B,C,D](fa)(f, g)
  }

  // reduce - given monoid
  def bitraversal[G[_]:Applicative]: Bitraversal[G] =
    new Bitraversal[G]

  def bitraversalS[S]: Bitraversal[State[S, ?]] =
    new Bitraversal[State[S, ?]]()(StateT.stateMonad)

  def bitraverse[G[_]:Applicative,A,B,C,D](fa: F[A,B])(f: A => G[C])(g: B => G[D]): G[F[C, D]] =
    bitraversal[G].run(fa)(f)(g)

  def bitraverseS[S,A,B,C,D](fa: F[A,B])(f: A => State[S,C])(g: B => State[S,D]): State[S,F[C, D]] =
    bitraversalS[S].run(fa)(f)(g)

  def runBitraverseS[S,A,B,C,D](fa: F[A,B], s: S)(f: A => State[S,C])(g: B => State[S,D]): (S, F[C, D]) =
    bitraverseS(fa)(f)(g)(s)

  /** Bitraverse `fa` with a `State[S, G[C]]` and `State[S, G[D]]`, internally using a `Trampoline` to avoid stack overflow. */
  def traverseSTrampoline[S, G[_] : Applicative, A, B, C, D](fa: F[A, B])(f: A => State[S, G[C]])(g: B => State[S, G[D]]): State[S, G[F[C, D]]] = {
    import Free._
    implicit val A = StateT.stateTMonadState[S, Trampoline].compose(Applicative[G])

    State[S, G[F[C, D]]]{
      initial =>
        val st = bitraverse[λ[α => StateT[Trampoline, S, G[α]]], A, B, C, D](fa)(f(_: A).lift[Trampoline])(g(_: B).lift[Trampoline])
        st(initial).run
    }
  }

  /** Bitraverse `fa` with a `Kleisli[G, S, C]` and `Kleisli[G, S, D]`, internally using a `Trampoline` to avoid stack overflow. */
  def bitraverseKTrampoline[S, G[_] : Applicative, A, B, C, D](fa: F[A, B])(f: A => Kleisli[G, S, C])(g: B => Kleisli[G, S, D]): Kleisli[G, S, F[C, D]] = {
    import Free._
    implicit val A = Kleisli.kleisliMonadReader[Trampoline, S].compose(Applicative[G])

    Kleisli[G, S, F[C, D]](s => {
      val kl = bitraverse[λ[α => Kleisli[Trampoline, S, G[α]]], A, B, C, D](fa)(z => Kleisli[Id, S, G[C]](i => f(z)(i)).lift[Trampoline])(z => Kleisli[Id, S, G[D]](i => g(z)(i)).lift[Trampoline])
      kl.run(s).run
    })
  }

  def bifoldLShape[A,B,C](fa: F[A,B], z: C)(f: (C,A) => C)(g: (C,B) => C): (C, F[Unit, Unit]) =
    runBitraverseS(fa, z)(a => State.modify(f(_,a)))(b => State.modify(g(_,b)))

  def bisequence[G[_] : Applicative, A, B](x: F[G[A], G[B]]): G[F[A, B]] = bitraverseImpl(x)(fa => fa, fb => fb)

  override def bifoldLeft[A,B,C](fa: F[A, B], z: C)(f: (C, A) => C)(g: (C, B) => C): C =
    bifoldLShape(fa, z)(f)(g)._1

  def bifoldMap[A,B,M](fa: F[A, B])(f: A => M)(g: B => M)(implicit F: Monoid[M]): M =
    bifoldLShape(fa, F.zero)((m, a) => F.append(m, f(a)))((m, b) => F.append(m, g(b)))._1

  def bifoldRight[A,B,C](fa: F[A, B], z: => C)(f: (A, => C) => C)(g: (B, => C) => C): C =
    bifoldMap(fa)((a: A) => (Endo.endo(f(a, _: C))))((b: B) => (Endo.endo(g(b, _: C)))) apply z

  /** Embed a Traverse on each side of this Bitraverse . */
  def embed[G[_],H[_]](implicit G0: Traverse[G], H0: Traverse[H]): Bitraverse[λ[(α, β) => F[G[α], H[β]]]] =
    new CompositionBitraverseTraverses[F, G, H] {
      def F = self
      def G = G0
      def H = H0
    }

  /** Embed a Traverse on the left side of this Bitraverse . */
  def embedLeft[G[_]](implicit G0: Traverse[G]): Bitraverse[λ[(α, β) => F[G[α], β]]] =
    embed[G,Id.Id]

  /** Embed a Traverse on the right side of this Bitraverse . */
  def embedRight[H[_]](implicit H0: Traverse[H]): Bitraverse[λ[(α, β) => F[α, H[β]]]] =
    embed[Id.Id,H]

  ////
  val bitraverseSyntax = new scalaz.syntax.BitraverseSyntax[F] { def F = Bitraverse.this }
}

object Bitraverse {
  @inline def apply[F[_, _]](implicit F: Bitraverse[F]): Bitraverse[F] = F

  ////

  ////
}

Other Scala examples (source code examples)

Here is a short list of links related to this Scala Bitraverse.scala source code file:

... this post is sponsored by my books ...

#1 New Release!

FP Best Seller

 

new blog posts

 

Copyright 1998-2024 Alvin Alexander, alvinalexander.com
All Rights Reserved.

A percentage of advertising revenue from
pages under the /java/jwarehouse URI on this website is
paid back to open source projects.