alvinalexander.com | career | drupal | java | mac | mysql | perl | scala | uml | unix  

Scala example source code file (Either.scala)

This example Scala source code file (Either.scala) is included in the alvinalexander.com "Java Source Code Warehouse" project. The intent of this project is to help you "Learn Scala by Example" TM.

Learn more about this Scala project at its project page.

Java - Scala tags/keywords

boolean, semigroup

The Either.scala Scala example source code

package scalaz

import scala.util.control.NonFatal
import scala.reflect.ClassTag
import Liskov.<~<

/** Represents a disjunction: a result that is either an `A` or a `B`.
 *
 * An instance of `A` [[\/]] B is either a [[-\/]]`[A]` (aka a "left") or a [[\/-]]`[B]` (aka a "right").
 *
 * A common use of a disjunction is to explicitly represent the possibility of failure in a result as opposed to
 * throwing an exception. By convention, the left is used for errors and the right is reserved for successes.
 * For example, a function that attempts to parse an integer from a string may have a return type of
 * `NumberFormatException` [[\/]] `Int`. However, since there is no need to actually throw an exception, the type (`A`)
 * chosen for the "left" could be any type representing an error and has no need to actually extend `Exception`.
 *
 * `A` [[\/]] `B` is isomorphic to `scala.Either[A, B]`, but [[\/]] is right-biased, so methods such as `map` and
 * `flatMap` apply only in the context of the "right" case. This right bias makes [[\/]] more convenient to use
 * than `scala.Either` in a monadic context. Methods such as `swap`, `swapped`, and `leftMap` provide functionality
 * that `scala.Either` exposes through left projections.
 *
 * `A` [[\/]] `B` is also isomorphic to [[Validation]]`[A, B]`. The subtle but important difference is that [[Applicative]]
 * instances for [[Validation]] accumulates errors ("lefts") while [[Applicative]] instances for [[\/]] fail fast on the
 * first "left" they evaluate. This fail-fast behavior allows [[\/]] to have lawful [[Monad]] instances that are consistent
 * with their [[Applicative]] instances, while [[Validation]] cannot.
 */
sealed abstract class \/[+A, +B] extends Product with Serializable {
  final class SwitchingDisjunction[X](r: => X) {
    def <[X](right: => X): SwitchingDisjunction[X] =
    new SwitchingDisjunction[X](right)

  /** Return `true` if this disjunction is left. */
  def isLeft: Boolean =
    this match {
      case -\/(_) => true
      case \/-(_) => false
    }

  /** Return `true` if this disjunction is right. */
  def isRight: Boolean =
    this match {
      case -\/(_) => false
      case \/-(_) => true
    }

  /** Catamorphism. Run the first given function if left, otherwise, the second given function. */
  def fold[X](l: A => X, r: B => X): X =
    this match {
      case -\/(a) => l(a)
      case \/-(b) => r(b)
    }

  /** Spin in tail-position on the right value of this disjunction. */
  def loopr[AA >: A, BB >: B, X](left: AA => X, right: BB => X \/ (AA \/ BB)): X =
    \/.loopRight(this, left, right)

  /** Spin in tail-position on the left value of this disjunction. */
  def loopl[AA >: A, BB >: B, X](left: AA => X \/ (AA \/ BB), right: BB => X): X =
    \/.loopLeft(this, left, right)

  /** Flip the left/right values in this disjunction. Alias for `unary_~` */
  def swap: (B \/ A) =
    this match {
      case -\/(a) => \/-(a)
      case \/-(b) => -\/(b)
    }

  /** Flip the left/right values in this disjunction. Alias for `swap` */
  def unary_~ : (B \/ A) =
    swap

  /** Run the given function on this swapped value. Alias for `~` */
  def swapped[AA, BB](k: (B \/ A) => (BB \/ AA)): (AA \/ BB) =
    k(swap).swap

  /** Run the given function on this swapped value. Alias for `swapped` */
  def ~[AA, BB](k: (B \/ A) => (BB \/ AA)): (AA \/ BB) =
    swapped(k)

  /** Binary functor map on this disjunction. */
  def bimap[C, D](f: A => C, g: B => D): (C \/ D) =
    this match {
      case -\/(a) => -\/(f(a))
      case \/-(b) => \/-(g(b))
    }

  /** Run the given function on the left value. */
  def leftMap[C](f: A => C): (C \/ B) =
    this match {
      case -\/(a) => -\/(f(a))
      case b @ \/-(_) => b
    }

  /** Binary functor traverse on this disjunction. */
  def bitraverse[F[_]: Functor, C, D](f: A => F[C], g: B => F[D]): F[C \/ D] =
    this match {
      case -\/(a) => Functor[F].map(f(a))(\/.left)
      case \/-(b) => Functor[F].map(g(b))(\/.right)
    }

  /** Map on the right of this disjunction. */
  def map[D](g: B => D): (A \/ D) =
    this match {
      case \/-(a)     => \/-(g(a))
      case b @ -\/(_) => b
    }

  /** Traverse on the right of this disjunction. */
  def traverse[F[_]: Applicative, AA >: A, D](g: B => F[D]): F[AA \/ D] =
    this match {
      case a @ -\/(_) => Applicative[F].point(a)
      case \/-(b) => Functor[F].map(g(b))(\/.right)
    }

  /** Run the side-effect on the right of this disjunction. */
  def foreach(g: B => Unit): Unit =
    bimap(_ => (), g)

  /** Apply a function in the environment of the right of this disjunction. */
  def ap[AA >: A, C](f: => AA \/ (B => C)): (AA \/ C) =
    f flatMap (ff => map(ff(_)))

  /** Bind through the right of this disjunction. */
  def flatMap[AA >: A, D](g: B => (AA \/ D)): (AA \/ D) =
    this match {
      case a @ -\/(_) => a
      case \/-(b) => g(b)
    }

  /** Fold on the right of this disjunction. */
  def foldRight[Z](z: => Z)(f: (B, => Z) => Z): Z =
    this match {
      case -\/(_) => z
      case \/-(a) => f(a, z)
    }

  /** Filter on the right of this disjunction. */
  def filter[AA >: A](p: B => Boolean)(implicit M: Monoid[AA]): (AA \/ B) =
    this match {
      case -\/(_) => this
      case \/-(b) => if(p(b)) this else -\/(M.zero)
    }

  /** Return `true` if this disjunction is a right value satisfying the given predicate. */
  def exists[BB >: B](p: BB => Boolean): Boolean =
    this match {
      case -\/(_) => false
      case \/-(b) => p(b)
    }

  /** Return `true` if this disjunction is a left value or the right value satisfies the given predicate. */
  def forall[BB >: B](p: BB => Boolean): Boolean =
    this match {
      case -\/(_) => true
      case \/-(b) => p(b)
    }

  /** Return an empty list or list with one element on the right of this disjunction. */
  def toList: List[B] =
    this match {
      case -\/(_) => Nil
      case \/-(b) => b :: Nil
    }

  /** Return an empty stream or stream with one element on the right of this disjunction. */
  def toStream: Stream[B] =
    this match {
      case -\/(_) => Stream()
      case \/-(b) => Stream(b)
    }

  /** Return an empty option or option with one element on the right of this disjunction. Useful to sweep errors under the carpet. */
  def toOption: Option[B] =
    this match {
      case -\/(_) => None
      case \/-(b) => Some(b)
    }

  /** Return an empty maybe or option with one element on the right of this disjunction. Useful to sweep errors under the carpet. */
  def toMaybe[BB >: B]: Maybe[BB] =
    this match {
      case -\/(_) => Maybe.empty
      case \/-(b) => Maybe.just(b)
    }

  /** Convert to a core `scala.Either` at your own peril. */
  def toEither: Either[A, B] =
    this match {
      case -\/(a) => Left(a)
      case \/-(b) => Right(b)
    }

  /** Return the right value of this disjunction or the given default if left. Alias for `|` */
  def getOrElse[BB >: B](x: => BB): BB =
    this match {
      case -\/(_) => x
      case \/-(b) => b
    }

  /** Return the right value of this disjunction or the given default if left. Alias for `getOrElse` */
  def |[BB >: B](x: => BB): BB =
    getOrElse(x)

  /** Return the right value of this disjunction or run the given function on the left. */
  def valueOr[BB >: B](x: A => BB): BB =
    this match {
      case -\/(a) => x(a)
      case \/-(b) => b
    }

  /** Return this if it is a right, otherwise, return the given value. Alias for `|||` */
  def orElse[C, BB >: B](x: => C \/ BB): C \/ BB =
    this match {
      case -\/(_) => x
      case right@ \/-(_) => right
    }

  /** Return this if it is a right, otherwise, return the given value. Alias for `orElse` */
  def |||[C, BB >: B](x: => C \/ BB): C \/ BB =
    orElse(x)

  /**
   * Sums up values inside disjunction, if both are left or right. Returns first left otherwise.
   * {{{
   * \/-(v1) +++ \/-(v2) → \/-(v1 + v2)
   * \/-(v1) +++ -\/(v2) → -\/(v2)
   * -\/(v1) +++ \/-(v2) → -\/(v1)
   * -\/(v1) +++ -\/(v2) → -\/(v1 + v2)
   * }}}
   */
  def +++[AA >: A, BB >: B](x: => AA \/ BB)(implicit M1: Semigroup[BB], M2: Semigroup[AA]): AA \/ BB =
    this match {
      case -\/(a1) => x match {
        case -\/(a2) => -\/(M2.append(a1, a2))
        case \/-(_) => this
      }
      case \/-(b1) => x match {
        case b2 @ -\/(_) => b2
        case \/-(b2) => \/-(M1.append(b1, b2))
      }
    }

  /** Ensures that the right value of this disjunction satisfies the given predicate, or returns left with the given value. */
  def ensure[AA >: A](onLeft: => AA)(f: B => Boolean): (AA \/ B) = this match {
    case \/-(b) => if (f(b)) this else -\/(onLeft)
    case -\/(_) => this
  }

  /** Run the given function on the left and return right with the result. */
  def recover[BB >: B](pf: PartialFunction[A, BB]): (A \/ BB) = this match {
    case -\/(a) if (pf isDefinedAt a) => \/-(pf(a))
    case _ => this
  }

  /** Run the given function on the left and return the result. */
  def recoverWith[AA >: A, BB >: B](pf: PartialFunction[AA, AA \/ BB]): (AA \/ BB) = this match {
    case -\/(a) if (pf isDefinedAt a) => pf(a)
    case _ => this
  }

  /** Compare two disjunction values for equality. */
  def ===[AA >: A, BB >: B](x: AA \/ BB)(implicit EA: Equal[AA], EB: Equal[BB]): Boolean =
    this match {
      case -\/(a1) => x match {
        case -\/(a2) => Equal[AA].equal(a1, a2)
        case \/-(_) => false
      }
      case \/-(b1) => x match {
        case \/-(b2) => Equal[BB].equal(b1, b2)
        case -\/(_) => false
      }
    }

  /** Compare two disjunction values for ordering. */
  def compare[AA >: A, BB >: B](x: AA \/ BB)(implicit EA: Order[AA], EB: Order[BB]): Ordering =
    this match {
      case -\/(a1) => x match {
        case -\/(a2) => Order[AA].apply(a1, a2)
        case \/-(_) => Ordering.LT
      }
      case \/-(b1) => x match {
        case \/-(b2) => Order[BB].apply(b1, b2)
        case -\/(_) => Ordering.GT
      }
    }

  /** Show for a disjunction value. */
  def show[AA >: A, BB >: B](implicit SA: Show[AA], SB: Show[BB]): Cord =
    this match {
      case -\/(a) => ("-\\/(": Cord) ++ SA.show(a) :- ')'
      case \/-(b) => ("\\/-(": Cord) ++ SB.show(b) :- ')'
    }

  /** Convert to a Validation. */
  def validation: Validation[A, B] =
    this match {
      case -\/(a) => Failure(a)
      case \/-(b) => Success(b)
    }

  /** Convert to a ValidationNel. */
  def validationNel[AA>:A] : ValidationNel[AA,B] =
    this match {
      case -\/(a) => Failure(NonEmptyList(a))
      case \/-(b) => Success(b)
    }

  /** Run a validation function and back to disjunction again. Alias for `@\?/` */
  def validationed[AA, BB](k: Validation[A, B] => Validation[AA, BB]): AA \/ BB =
    k(validation).disjunction

  /** Run a validation function and back to disjunction again. Alias for `validationed` */
  def @\?/[AA, BB](k: Validation[A, B] => Validation[AA, BB]): AA \/ BB =
    validationed(k)

  /** Return the value from whichever side of the disjunction is defined, given a commonly assignable type. */
  def merge[AA >: A](implicit ev: B <~< AA): AA =
    this match {
      case -\/(a) => a
      case \/-(b) => ev(b)
    }

  /** Convert to a These. */
  def toThese: A \&/ B =
    fold(
      a => \&/.This(a),
      b => \&/.That(b)
    )

}

/** A left disjunction
 *
 * Often used to represent the failure case of a result
 */
final case class -\/[+A](a: A) extends (A \/ Nothing)

/** A right disjunction
 *
 * Often used to represent the success case of a result
 */
final case class \/-[+B](b: B) extends (Nothing \/ B)

object \/ extends DisjunctionInstances {

  /** Construct a left disjunction value. */
  def left[A, B]: A => A \/ B =
    -\/(_)

  /** Construct a right disjunction value. */
  def right[A, B]: B => A \/ B =
    \/-(_)

  /** Construct a disjunction value from a standard `scala.Either`. */
  def fromEither[A, B](e: Either[A, B]): A \/ B =
    e fold (left, right)

  def fromTryCatchThrowable[T, E <: Throwable](a: => T)(implicit nn: NotNothing[E], ex: ClassTag[E]): E \/ T = try {
    \/-(a)
  } catch {
    case e if ex.runtimeClass.isInstance(e) => -\/(e.asInstanceOf[E])
  }

  def fromTryCatchNonFatal[T](a: => T): Throwable \/ T = try {
    \/-(a)
  } catch {
    case NonFatal(t) => -\/(t)
  }

  /** Spin in tail-position on the right value of the given disjunction. */
  @annotation.tailrec
  final def loopRight[A, B, X](d: A \/ B, left: A => X, right: B => X \/ (A \/ B)): X =
    d match {
      case -\/(a) => left(a)
      case \/-(b) => right(b) match {
        case -\/(x) => x
        case \/-(q) => loopRight(q, left, right)
      }
    }

  /** Spin in tail-position on the left value of the given disjunction. */
  @annotation.tailrec
  final def loopLeft[A, B, X](d: A \/ B, left: A => X \/ (A \/ B), right: B => X): X =
    d match {
      case -\/(a) => left(a) match {
        case -\/(x) => x
        case \/-(q) => loopLeft(q, left, right)
      }
      case \/-(b) => right(b)
    }

}

sealed abstract class DisjunctionInstances extends DisjunctionInstances0 {
  implicit def DisjunctionOrder[A: Order, B: Order]: Order[A \/ B] =
    new Order[A \/ B] {
      def order(a1: A \/ B, a2: A \/ B) =
        a1 compare a2
      override def equal(a1: A \/ B, a2: A \/ B) =
        a1 === a2
    }

  implicit def DisjunctionMonoid[A: Semigroup, B: Monoid]: Monoid[A \/ B] =
    new Monoid[A \/ B] {
      def append(a1: A \/ B, a2: => A \/ B) =
        a1 +++ a2
      def zero =
        \/-(Monoid[B].zero)
    }
}

sealed abstract class DisjunctionInstances0 extends DisjunctionInstances1 {
  implicit def DisjunctionEqual[A: Equal, B: Equal]: Equal[A \/ B] =
    new Equal[A \/ B] {
      def equal(a1: A \/ B, a2: A \/ B) =
        a1 === a2
    }

  implicit def DisjunctionShow[A: Show, B: Show]: Show[A \/ B] =
    Show.show(_.show)

  implicit def DisjunctionSemigroup[A: Semigroup, B: Semigroup]: Semigroup[A \/ B] =
    new Semigroup[A \/ B] {
      def append(a1: A \/ B, a2: => A \/ B) =
        a1 +++ a2
    }
}

sealed abstract class DisjunctionInstances1 extends DisjunctionInstances2 {
  implicit def DisjunctionInstances1[L]: Traverse[L \/ ?] with Monad[L \/ ?] with BindRec[L \/ ?] with Cozip[L \/ ?] with Plus[L \/ ?] with Optional[L \/ ?] with MonadError[L \/ ?, L] =
    new Traverse[L \/ ?] with Monad[L \/ ?] with BindRec[L \/ ?] with Cozip[L \/ ?] with Plus[L \/ ?] with Optional[L \/ ?] with MonadError[L \/ ?, L] {
      override def map[A, B](fa: L \/ A)(f: A => B) =
        fa map f

      @scala.annotation.tailrec
      def tailrecM[A, B](f: A => L \/ (A \/ B))(a: A): L \/ B =
        f(a) match {
          case l @ -\/(_) => l
          case \/-(-\/(a0)) => tailrecM(f)(a0)
          case \/-(rb @ \/-(_)) => rb
        }

      def bind[A, B](fa: L \/ A)(f: A => L \/ B) =
        fa flatMap f

      def point[A](a: => A) =
        \/-(a)

      def traverseImpl[G[_] : Applicative, A, B](fa: L \/ A)(f: A => G[B]) =
        fa.traverse(f)

      override def foldRight[A, B](fa: L \/ A, z: => B)(f: (A, => B) => B) =
        fa.foldRight(z)(f)

      def cozip[A, B](x: L \/ (A \/ B)) =
        x match {
          case l @ -\/(_) => -\/(l)
          case \/-(e) => e match {
            case -\/(a) => -\/(\/-(a))
            case b @ \/-(_) => \/-(b)
          }
        }

      def plus[A](a: L \/ A, b: => L \/ A) =
        a orElse b

      def pextract[B, A](fa: L \/ A): (L \/ B) \/ A = fa match {
        case l@ -\/(_) => -\/(l)
        case r@ \/-(_) => r
      }

      def raiseError[A](e: L): L \/ A =
        -\/(e)

      def handleError[A](fa: L \/ A)(f: L => L \/ A): L \/ A = fa match {
        case -\/(e) => f(e)
        case r => r
      }
    }
}

sealed abstract class DisjunctionInstances2 {
  implicit val DisjunctionInstances2 : Bitraverse[\/] = new Bitraverse[\/] {
    override def bimap[A, B, C, D](fab: A \/ B)
                                  (f: A => C, g: B => D) = fab bimap (f, g)

    def bitraverseImpl[G[_] : Applicative, A, B, C, D](fab: A \/ B)
                                                  (f: A => G[C], g: B => G[D]) =
      fab.bitraverse(f, g)
  }

  implicit val DisjunctionAssociative: Associative[\/] = new Associative[\/] {
    def reassociateLeft[A, B, C](f: \/[A, \/[B, C]]) =
      f.fold(
        a => -\/(-\/(a)),
        _.fold(
          b => -\/(\/-(b)),
          \/.right
        )
      )

    def reassociateRight[A, B, C](f: \/[\/[A, B], C]) =
      f.fold(
        _.fold(
          \/.left,
          b => \/-(-\/(b))
        ),
        c => \/-(\/-(c))
      )
  }
}

Other Scala examples (source code examples)

Here is a short list of links related to this Scala Either.scala source code file:

... this post is sponsored by my books ...

#1 New Release!

FP Best Seller

 

new blog posts

 

Copyright 1998-2024 Alvin Alexander, alvinalexander.com
All Rights Reserved.

A percentage of advertising revenue from
pages under the /java/jwarehouse URI on this website is
paid back to open source projects.