alvinalexander.com | career | drupal | java | mac | mysql | perl | scala | uml | unix  

Scala example source code file (Free.scala)

This example Scala source code file (Free.scala) is included in the alvinalexander.com "Java Source Code Warehouse" project. The intent of this project is to help you "Learn Scala by Example" TM.

Learn more about this Scala project at its project page.

Java - Scala tags/keywords

free, functor, monad, return, source, suspend, trampoline

The Free.scala Scala example source code

package scalaz

import annotation.tailrec
import Free._
// See explanation in comments on function1CovariantByName
import std.function.{function1Covariant => _, function1CovariantByName, _}
import std.tuple._

object Free extends FreeInstances {

  /** Collapse a trampoline to a single step. */
  def reset[A](r: Trampoline[A]): Trampoline[A] = { val a = r.run; return_(a) }

  /** Suspend the given computation in a single step. */
  def return_[S[_], A](value: => A)(implicit S: Applicative[S]): Free[S, A] =
    liftF[S, A](S.point(value))

  /** Alias for `point` */
  def pure[S[_], A](value: A): Free[S, A] = point(value)

  /** Absorb a step into the free monad. */
  def roll[S[_], A](value: S[Free[S, A]]): Free[S, A] =
    liftF(value).flatMap(x => x)

  /** Suspend a computation in a pure step of the applicative functor `S` */
  def suspend[S[_], A](value: => Free[S, A])(implicit S: Applicative[S]): Free[S, A] =
    liftF(S.pure(())).flatMap(_ => value)

  /** A version of `liftF` that infers the nested type constructor. */
  def liftFU[MA](value: => MA)(implicit MA: Unapply[Functor, MA]): Free[MA.M, MA.A] =
    liftF(MA(value))

  /** Monadic join for the higher-order monad `Free` */
  def joinF[S[_], A](value: Free[Free[S, ?], A]): Free[S, A] =
    value.flatMapSuspension(NaturalTransformation.refl[Free[S, ?]])

  /** A trampoline step that doesn't do anything. */
  def pause: Trampoline[Unit] =
    return_(())

  /** A source that produces the given value. */
  def produce[A](a: A): Source[A, Unit] =
    liftF[(A, ?), Unit](a -> point[(A, ?), Unit](()))

  /** A sink that waits for a single value and returns it. */
  def await[A]: Sink[A, A] = liftF[(=> A) => ?, A](a => a)

  /** Absorb a step in `S` into the free monad for `S` */
  def apply[S[_], A](s: S[Free[S, A]]): Free[S, A] =
    roll(s)

  /** Return from the computation with the given value. */
  private case class Return[S[_], A](a: A) extends Free[S, A]

  /** Suspend the computation with the given suspension. */
  private case class Suspend[S[_], A](a: S[A]) extends Free[S, A]

  /** Call a subroutine and continue with the given function. */
  private case class Gosub[S[_], A0, B](a0: Free[S, A0], f0: A0 => Free[S, B]) extends Free[S, B] {
    type A = A0
    def a: Free[S, A] = a0
    def f: A => Free[S, B] = f0
  }

  /** A computation that can be stepped through, suspended, and paused */
  type Trampoline[A] = Free[Function0, A]

  /** A computation that produces values of type `A`, eventually resulting in a value of type `B`. */
  type Source[A, B] = Free[(A, ?), B]

  /** A computation that accepts values of type `A`, eventually resulting in a value of type `B`.
    * Note the similarity to an [[scalaz.iteratee.Iteratee]].
    */
  type Sink[A, B] = Free[(=> A) => ?, B]

  /** Suspends a value within a functor in a single step. Monadic unit for a higher-order monad. */
  def liftF[S[_], A](value: S[A]): Free[S, A] =
    Suspend(value)

  /** Return the given value in the free monad. */
  def point[S[_], A](value: A): Free[S, A] = Return[S, A](value)

}

/**
 * A free monad for a type constructor `S`.
 * Binding is done using the heap instead of the stack, allowing tail-call elimination.
 */
sealed abstract class Free[S[_], A] {
  final def map[B](f: A => B): Free[S, B] =
    flatMap(a => Return(f(a)))

  /** Alias for `flatMap` */
  final def >>=[B](f: A => Free[S, B]): Free[S, B] = this flatMap f

  /** Binds the given continuation to the result of this computation. */
  final def flatMap[B](f: A => Free[S, B]): Free[S, B] = Gosub(this, f)

  /** Catamorphism. Run the first given function if Return, otherwise, the second given function. */
  final def fold[B](r: A => B, s: S[Free[S, A]] => B)(implicit S: Functor[S]): B =
    resume.fold(s, r)

  /** Evaluates a single layer of the free monad **/
  @tailrec final def resume(implicit S: Functor[S]): (S[Free[S,A]] \/ A) =
    this match {
      case Return(a) => \/-(a)
      case Suspend(t) => -\/(S.map(t)(Return(_)))
      case b @ Gosub(_, _) => b.a match {
        case Return(a) => b.f(a).resume
        case Suspend(t) => -\/(S.map(t)(b.f))
        case c @ Gosub(_, _) => c.a.flatMap(z => c.f(z).flatMap(b.f)).resume
      }
    }

  /** Changes the suspension functor by the given natural transformation. */
  final def mapSuspension[T[_]](f: S ~> T): Free[T, A] =
    flatMapSuspension(new (S ~> Free[T,?]) {
      def apply[X](s: S[X]) = Suspend(f(s))
    })

  /** Modifies the first suspension with the given natural transformation. */
  final def mapFirstSuspension(f: S ~> S): Free[S, A] =
    step match {
      case Suspend(s) => Suspend(f(s))
      case a@Gosub(_, _) => a.a match {
        case Suspend(s) => Suspend(f(s)).flatMap(a.f)
        case _ => a.a.mapFirstSuspension(f).flatMap(a.f)
      }
      case x => x
    }

  /**
   * Substitutes a free monad over the given functor into the suspension functor of this program.
   * `Free` is a monad in an endofunctor category and this is its monadic bind.
   */
  final def flatMapSuspension[T[_]](f: S ~> Free[T, ?]): Free[T, A] =
    foldMap[Free[T,?]](f)(freeMonad[T])

  /** Applies a function `f` to a value in this monad and a corresponding value in the dual comonad, annihilating both. */
  final def zapWith[G[_], B, C](bs: Cofree[G, B])(f: (A, B) => C)(implicit S: Functor[S], d: Zap[S, G]): C =
    Zap.monadComonadZap.zapWith(this, bs)(f)

  /** Applies a function in a comonad to the corresponding value in this monad, annihilating both. */
  final def zap[G[_], B](fs: Cofree[G, A => B])(implicit S: Functor[S], d: Zap[S, G]): B =
    zapWith(fs)((a, f) => f(a))

  /** Runs a single step, using a function that extracts the resumption from its suspension functor. */
  final def bounce(f: S[Free[S, A]] => Free[S, A])(implicit S: Functor[S]): Free[S, A] = resume match {
    case -\/(s) => f(s)
    case \/-(r) => Return(r)
  }

  /** Runs to completion, using a function that extracts the resumption from its suspension functor. */
  final def go(f: S[Free[S, A]] => Free[S, A])(implicit S: Functor[S]): A = {
    @tailrec def go2(t: Free[S, A]): A = t.resume match {
      case -\/(s) => go2(f(s))
      case \/-(r) => r
    }
    go2(this)
  }

  /**
   * Runs to completion, using a function that maps the resumption from `S` to a monad `M`.
   * @since 7.0.1
   */
  final def runM[M[_]](f: S[Free[S, A]] => M[Free[S, A]])(implicit S: Functor[S], M: Monad[M]): M[A] = {
    def runM2(t: Free[S, A]): M[A] = t.resume match {
      case -\/(s) => Monad[M].bind(f(s))(runM2)
      case \/-(r) => Monad[M].pure(r)
    }
    runM2(this)
  }

  /**
    * Run Free using constant stack.
    */
  final def runRecM[M[_]](f: S[Free[S, A]] => M[Free[S, A]])(implicit S: Functor[S], M: Applicative[M], B: BindRec[M]): M[A] = {
    def go(e: S[Free[S, A]] \/ A): M[Free[S, A] \/ A] =
      e match {
        case -\/(sf) => M.map(f(sf))(\/.left)
        case a @ \/-(_) => M.point(a)
      }

    B.tailrecM[Free[S, A], A]((ma: Free[S, A]) => go(ma.resume))(this)
  }

  /**
   * Evaluate one layer in the free monad, re-associating any left-nested binds to the right
   * and pulling the first suspension to the top.
   */
  @annotation.tailrec final def step: Free[S, A] = this match {
    case x@Gosub(_, _) => x.a match {
      case b@Gosub(_, _) =>
        b.a.flatMap(a => b.f(a).flatMap(x.f)).step
      case Return(b)=>
        x.f(b).step
      case _ =>
        x
    }
    case x => x
  }

  /**
   * Catamorphism for `Free`.
   * Runs to completion, mapping the suspension with the given transformation at each step and
   * accumulating into the monad `M`.
   */
  final def foldMap[M[_]](f: S ~> M)(implicit M: Monad[M]): M[A] =
    step match {
      case Return(a) => M.pure(a)
      case Suspend(s) => f(s)
      // This is stack safe because `step` ensures right-associativity of Gosub
      case a@Gosub(_, _) => M.bind(a.a foldMap f)(c => a.f(c) foldMap f)
    }

  final def foldMapRec[M[_]](f: S ~> M)(implicit M: Applicative[M], B: BindRec[M]): M[A] =
    B.tailrecM[Free[S, A], A]{
      _.step match {
        case Return(a) => M.point(\/-(a))
        case Suspend(t) => M.map(f(t))(\/.right)
        case b @ Gosub(_, _) => (b.a: @unchecked) match {
          case Suspend(t) => M.map(f(t))(a => -\/(b.f(a)))
        }
      }
    }(this)

  import Id._

  /**
   * Folds this free recursion to the right using the given natural transformations.
   */
  final def foldRight[G[_]](z: Id ~> G)(f: λ[α => S[G[α]]] ~> G)(implicit S: Functor[S]): G[A] =
    this.resume match {
      case -\/(s) => f(S.map(s)(_.foldRight(z)(f)))
      case \/-(r) => z(r)
    }

  /** Runs to completion, allowing the resumption function to thread an arbitrary state of type `B`. */
  final def foldRun[B](b: B)(f: (B, S[Free[S, A]]) => (B, Free[S, A]))(implicit S: Functor[S]): (B, A) = {
    @tailrec def foldRun2(t: Free[S, A], z: B): (B, A) = t.resume match {
      case -\/(s) =>
        val (b1, s1) = f(z, s)
        foldRun2(s1, b1)
      case \/-(r) => (z, r)
    }
    foldRun2(this, b)
  }

  /** Runs a trampoline all the way to the end, tail-recursively. */
  final def run(implicit ev: Free[S, A] =:= Trampoline[A]): A =
    ev(this).go(_())

  /** Interleave this computation with another, combining the results with the given function. */
  final def zipWith[B, C](tb: Free[S, B])(f: (A, B) => C): Free[S, C] = {
    (step, tb.step) match {
      case (Return(a), Return(b)) => Return(f(a, b))
      case (a@Suspend(_), Return(b)) => a.flatMap(x => Return(f(x, b)))
      case (Return(a), b@Suspend(_)) => b.flatMap(x => Return(f(a, x)))
      case (a@Suspend(_), b@Suspend(_)) => a.flatMap(x => b.map(y => f(x, y)))
      case (a@Gosub(_, _), Return(b)) => a.a.flatMap(x => a.f(x).map(f(_, b)))
      case (a@Gosub(_, _), b@Suspend(_)) => a.a.flatMap(x => b.flatMap(y => a.f(x).map(f(_, y))))
      case (a@Gosub(_, _), b@Gosub(_, _)) => a.a.zipWith(b.a)((x, y) => a.f(x).zipWith(b.f(y))(f)).flatMap(x => x)
      case (a, b@Gosub(_, _)) => a.flatMap(x => b.a.flatMap(y => b.f(y).map(f(x, _))))
    }
  }

  /** Runs a `Source` all the way to the end, tail-recursively, collecting the produced values. */
  def collect[B](implicit ev: Free[S, A] =:= Source[B, A]): (Vector[B], A) = {
    @tailrec def go(c: Source[B, A], v: Vector[B] = Vector()): (Vector[B], A) =
      c.resume match {
        case -\/((b, cont)) => go(cont, v :+ b)
        case \/-(r)         => (v, r)
      }
    go(ev(this))
  }

  /** Drive this `Source` with the given Sink. */
  def drive[E, B](sink: Sink[Option[E], B])(implicit ev: Free[S, A] =:= Source[E, A]): (A, B) = {
    @tailrec def go(src: Source[E, A], snk: Sink[Option[E], B]): (A, B) =
      (src.resume, snk.resume) match {
        case (-\/((e, c)), -\/(f)) => go(c, f(Some(e)))
        case (-\/((e, c)), \/-(y)) => go(c, Sink.sinkMonad[Option[E]].pure(y))
        case (\/-(x), -\/(f))      => go(Source.sourceMonad[E].pure(x), f(None))
        case (\/-(x), \/-(y))      => (x, y)
      }
    go(ev(this), sink)
  }

  /** Feed the given stream to this `Source`. */
  def feed[E](ss: Stream[E])(implicit ev: Free[S, A] =:= Sink[E, A]): A = {
    @tailrec def go(snk: Sink[E, A], rest: Stream[E]): A = (rest, snk.resume) match {
      case (x #:: xs, -\/(f)) => go(f(x), xs)
      case (Stream(), -\/(f)) => go(f(sys.error("No more values.")), Stream())
      case (_, \/-(r))        => r
    }
    go(ev(this), ss)
  }

  /** Feed the given source to this `Sink`. */
  def drain[E, B](source: Source[E, B])(implicit ev: Free[S, A] =:= Sink[E, A]): (A, B) = {
    @tailrec def go(src: Source[E, B], snk: Sink[E, A]): (A, B) = (src.resume, snk.resume) match {
      case (-\/((e, c)), -\/(f)) => go(c, f(e))
      case (-\/((e, c)), \/-(y)) => go(c, Sink.sinkMonad[E].pure(y))
      case (\/-(x), -\/(f))      => sys.error("Not enough values in source.")
      case (\/-(x), \/-(y))      => (y, x)
    }
    go(source, ev(this))
  }

  /** Duplication in `Free` as a comonad in the endofunctor category. */
  def duplicateF: Free[Free[S, ?], A] = extendF[Free[S,?]](NaturalTransformation.refl[Free[S,?]])

  /** Extension in `Free` as a comonad in the endofunctor category. */
  def extendF[T[_]](f: Free[S, ?] ~> T): Free[T, A] = mapSuspension(new (S ~> T) {
    def apply[X](x: S[X]) = f(liftF(x))
  })

  /** Extraction from `Free` as a comonad in the endofunctor category. */
  def extractF(implicit S: Monad[S]): S[A] = foldMap(NaturalTransformation.refl[S])

  def toFreeT: FreeT[S, Id, A] =
    this match {
      case Return(a) =>
        FreeT.point(a)
      case Suspend(a) =>
        FreeT.liftF(a)
      case a @ Gosub(_, _) =>
        a.a.toFreeT.flatMap(a.f.andThen(_.toFreeT))
    }
}

object Trampoline extends TrampolineInstances {

  def done[A](a: A): Trampoline[A] =
    Free.pure[Function0,A](a)

  def delay[A](a: => A): Trampoline[A] =
    suspend(done(a))

  def suspend[A](a: => Trampoline[A]): Trampoline[A] =
    Free.suspend(a)
}

sealed trait TrampolineInstances {
  implicit val trampolineInstance: Monad[Trampoline] with Comonad[Trampoline] with BindRec[Trampoline] =
    new Monad[Trampoline] with Comonad[Trampoline] with BindRec[Trampoline] {
      override def point[A](a: => A) = return_[Function0, A](a)
      def bind[A, B](ta: Trampoline[A])(f: A => Trampoline[B]) = ta flatMap f
      def copoint[A](fa: Trampoline[A]) = fa.run
      def cobind[A, B](fa: Trampoline[A])(f: Trampoline[A] => B) = return_(f(fa))
      override def cojoin[A](fa: Trampoline[A]) = Free.point(fa)
      def tailrecM[A, B](f: A => Trampoline[A \/ B])(a: A): Trampoline[B] =
        f(a).flatMap(_.fold(tailrecM(f), point(_)))
    }
}

object Sink extends SinkInstances

sealed trait SinkInstances {
  implicit def sinkMonad[S]: Monad[Sink[S, ?]] =
    new Monad[Sink[S, ?]] {
      def point[A](a: => A) = liftF[(=> S) => ?, Unit](s => ()).map(_ => a)
      def bind[A, B](s: Sink[S, A])(f: A => Sink[S, B]) = s flatMap f
    }
}

object Source extends SourceInstances

sealed trait SourceInstances {
  implicit def sourceMonad[S]: Monad[Source[S, ?]] =
    new Monad[Source[S, ?]] {
      override def point[A](a: => A) = Free.point[(S, ?), A](a)
      def bind[A, B](s: Source[S, A])(f: A => Source[S, B]) = s flatMap f
    }
}

sealed abstract class FreeInstances3 {
  implicit def freeFoldable[F[_]: Foldable: Functor]: Foldable[Free[F, ?]] =
    new FreeFoldable[F] {
      def F = implicitly
      def F0 = implicitly
    }
}

sealed abstract class FreeInstances2 extends FreeInstances3 {
  implicit def freeFoldable1[F[_]: Foldable1: Functor]: Foldable1[Free[F, ?]] =
    new FreeFoldable1[F] {
      def F = implicitly
      def F0 = implicitly
    }
}

sealed abstract class FreeInstances1 extends FreeInstances2 {
  implicit def freeTraverse[F[_]: Traverse]: Traverse[Free[F, ?]] =
    new FreeTraverse[F] {
      def F = implicitly
    }
}

sealed abstract class FreeInstances0 extends FreeInstances1 {
  implicit def freeTraverse1[F[_]: Traverse1]: Traverse1[Free[F, ?]] =
    new FreeTraverse1[F] {
      def F = implicitly
    }

  implicit def freeSemigroup[S[_], A: Semigroup]: Semigroup[Free[S, A]] =
    Semigroup.liftSemigroup[Free[S, ?], A]
}

// Trampoline, Sink, and Source are type aliases. We need to add their type class instances
// to Free to be part of the implicit scope.
sealed abstract class FreeInstances extends FreeInstances0 with TrampolineInstances with SinkInstances with SourceInstances {
  implicit def freeMonad[S[_]]: Monad[Free[S, ?]] with BindRec[Free[S, ?]] =
    new Monad[Free[S, ?]] with BindRec[Free[S, ?]] {
      override def map[A, B](fa: Free[S, A])(f: A => B) = fa map f
      def bind[A, B](a: Free[S, A])(f: A => Free[S, B]) = a flatMap f
      def point[A](a: => A) = Free.point(a)
      // Free trampolines, should be alright to just perform binds.
      def tailrecM[A, B](f: A => Free[S, A \/ B])(a: A): Free[S, B] =
        f(a).flatMap(_.fold(tailrecM(f), point(_)))
    }

  implicit def freeZip[S[_]](implicit F: Functor[S], Z: Zip[S]): Zip[Free[S, ?]] =
    new Zip[Free[S, ?]] {
      override def zip[A, B](aa: => Free[S, A], bb: => Free[S, B]) =
        (aa.resume, bb.resume) match {
          case (-\/(a), -\/(b)) => roll(Z.zipWith(a, b)(zip(_, _)))
          case (-\/(a), \/-(b)) => roll(F.map(a)(zip(_, point(b))))
          case (\/-(a), -\/(b)) => roll(F.map(b)(zip(point(a), _)))
          case (\/-(a), \/-(b)) => point((a, b))
        }
    }

  implicit def freeMonoid[S[_], A: Monoid]: Monoid[Free[S, A]] =
    Monoid.liftMonoid[Free[S, ?], A]
}

private sealed trait FreeBind[F[_]] extends Bind[Free[F, ?]] {
  override def map[A, B](fa: Free[F, A])(f: A => B) = fa map f
  def bind[A, B](a: Free[F, A])(f: A => Free[F, B]) = a flatMap f
}

private sealed trait FreeFoldable[F[_]] extends Foldable[Free[F, ?]] {
  def F: Foldable[F]
  implicit def F0: Functor[F]

  override final def foldMap[A, B: Monoid](fa: Free[F, A])(f: A => B): B =
    fa.resume match {
      case -\/(s) => F.foldMap(s)(foldMap(_)(f))
      case \/-(r) => f(r)
    }

  override final def foldLeft[A, B](fa: Free[F, A], z: B)(f: (B, A) => B): B =
    fa.resume match {
      case -\/(s) => F.foldLeft(s, z)((b, a) => foldLeft(a, b)(f))
      case \/-(r) => f(z, r)
    }

  override final def foldRight[A, B](fa: Free[F, A], z: => B)(f: (A, => B) => B): B =
    fa.resume match {
      case -\/(s) => F.foldRight(s, z)(foldRight(_, _)(f))
      case \/-(r) => f(r, z)
    }
}

private sealed trait FreeFoldable1[F[_]] extends Foldable1[Free[F, ?]] {
  def F: Foldable1[F]
  implicit def F0: Functor[F]

  override final def foldMap1[A, B: Semigroup](fa: Free[F, A])(f: A => B): B =
    fa.resume match {
      case -\/(s) => F.foldMap1(s)(foldMap1(_)(f))
      case \/-(r) => f(r)
    }

  override final def foldMapRight1[A, B](fa: Free[F, A])(z: A => B)(f: (A, => B) => B): B =
    fa.resume match {
      case -\/(s) => F.foldMapRight1(s)(foldMapRight1(_)(z)(f))(foldRight(_, _)(f))
      case \/-(r) => z(r)
    }

  override final def foldMapLeft1[A, B](fa: Free[F, A])(z: A => B)(f: (B, A) => B): B =
    fa.resume match {
      case -\/(s) => F.foldMapLeft1(s)(foldMapLeft1(_)(z)(f))((b, a) => foldLeft(a, b)(f))
      case \/-(r) => z(r)
    }
}

private sealed trait FreeTraverse[F[_]] extends Traverse[Free[F, ?]] with FreeFoldable[F]{
  implicit def F: Traverse[F]
  override final def F0 = F

  override final def map[A, B](fa: Free[F, A])(f: A => B) = fa map f

  override final def traverseImpl[G[_], A, B](fa: Free[F, A])(f: A => G[B])(implicit G: Applicative[G]): G[Free[F, B]] =
    fa.resume match {
      case -\/(s) => G.map(F.traverseImpl(s)(traverseImpl[G, A, B](_)(f)))(roll(_))
      case \/-(r) => G.map(f(r))(point(_))
    }
}

private sealed abstract class FreeTraverse1[F[_]] extends Traverse1[Free[F, ?]] with FreeTraverse[F] with FreeFoldable1[F]{
  implicit def F: Traverse1[F]

  override final def traverse1Impl[G[_], A, B](fa: Free[F, A])(f: A => G[B])(implicit G: Apply[G]): G[Free[F, B]] =
    fa.resume match {
      case -\/(s) => G.map(F.traverse1Impl(s)(traverse1Impl[G, A, B](_)(f)))(roll(_))
      case \/-(r) => G.map(f(r))(point(_))
    }
}

Other Scala examples (source code examples)

Here is a short list of links related to this Scala Free.scala source code file:

... this post is sponsored by my books ...

#1 New Release!

FP Best Seller

 

new blog posts

 

Copyright 1998-2024 Alvin Alexander, alvinalexander.com
All Rights Reserved.

A percentage of advertising revenue from
pages under the /java/jwarehouse URI on this website is
paid back to open source projects.