alvinalexander.com | career | drupal | java | mac | mysql | perl | scala | uml | unix  

Scala example source code file (Kan.scala)

This example Scala source code file (Kan.scala) is included in the alvinalexander.com "Java Source Code Warehouse" project. The intent of this project is to help you "Learn Scala by Example" TM.

Learn more about this Scala project at its project page.

Java - Scala tags/keywords

adjunction, functor, lan, ran

The Kan.scala Scala example source code

package scalaz

/** The right Kan extension of `H` along `G` */
trait Ran[G[_], H[_], A] { ran =>
  def apply[B](f: A => G[B]): H[B]

  def map[B](f: A => B): Ran[G, H, B] = new Ran[G, H, B] {
    def apply[C](k: B => G[C]): H[C] = ran(f andThen k)
  }

  def toAdjoint[F[_]](implicit A: Adjunction[F, G]): H[F[A]] =
    apply(a => A.unit(a))
}

object Ran {
  import Id._

  implicit def ranFunctor[G[_], H[_]]: Functor[Ran[G, H, ?]] =
    new Functor[Ran[G, H, ?]] {
      def map[A,B](r: Ran[G, H, A])(f: A => B) = r map f
    }

  /**
   * The universal property of a right Kan extension. The functor `Ran[G,H,_]` and the
   * natural transformation `gran[G,H,_]` are couniversal in the sense that for any
   * functor `K` and a natural transformation `s` from `K[G[_]]` to `H`, a unique
   * natural transformation `toRan` exists from `K` to `Ran[G,H,_]` such that
   * for all `k`, `gran(toRan(k)) = s(k)`.
   */
  def toRan[G[_], H[_], K[_]:Functor, B](k: K[B])(s: λ[α => K[G[α]]] ~> H): Ran[G, H, B] =
    new Ran[G, H, B] {
      def apply[C](f: B => G[C]) = s(Functor[K].map(k)(f))
    }

  /**
   * `toRan` and `fromRan` witness an adjunction from `Compose[G,_,_]` to `Ran[G,_,_]`.
   */
  def fromRan[G[_], H[_], K[_], B](k: K[G[B]])(s: K ~> Ran[G, H, ?]): H[B] =
    s(k)(x => x)

  def adjointToRan[F[_], G[_], A](f: F[A])(implicit A: Adjunction[F, G]): Ran[G, Id, A] =
    new Ran[G, Id, A] {
      def apply[B](a: A => G[B]) = A.rightAdjunct(f)(a)
    }

  def ranToAdjoint[F[_], G[_], A](r: Ran[G, Id, A])(implicit A: Adjunction[F, G]): F[A] =
    r(a => A.unit(a))

  def composedAdjointToRan[F[_], G[_], H[_], A](h: H[F[A]])(
    implicit A: Adjunction[F, G], H: Functor[H]): Ran[G, H, A] =
      new Ran[G, H, A] {
        def apply[B](f: A => G[B]) = H.map(h)(A.rightAdjunct(_)(f))
      }

  /** This is the natural transformation that defines a right Kan extension. */
  def gran[G[_], H[_], A](r: Ran[G, H, G[A]]): H[A] =
    r(a => a)
}

/** The left Kan extension of `H` along `G` */
trait Lan[G[_], H[_], A] { lan =>
  type I
  def v: H[I]
  def f(gi: G[I]): A

  /**
   * The universal property of a left Kan extension. The functor `Lan[G,H,_]` and the
   * natural transformation `glan[G,H,_]` are universal in the sense that for any
   * functor `F` and a natural transformation `s` from `H` to `F[G[_]]`, a unique
   * natural transformation `toLan` exists from `Lan[G,H,_]` to `F` such that
   * for all `h`, `glan(h).toLan = s(h)`.
   */
  def toLan[F[_]:Functor](s: H ~> λ[α => F[G[α]]]): F[A] =
    Functor[F].map(s(v))(f)

  /**
   * If `G` is left adjoint to `F`, there is a natural isomorphism between
   * `Lan[G,H,_]` and `H[F[_]]`
   */
  def toAdjoint[F[_]](implicit H: Functor[H], A: Adjunction[G,F]): H[F[A]] =
    H.map(v)(A.leftAdjunct(_)(f))

  def map[B](g: A => B): Lan[G, H, B] = new Lan[G, H, B] {
    type I = lan.I
    private[this] val vc = Need(lan.v)
    def v = vc.value
    def f(gi: G[I]) = g(lan f gi)
  }

}

object Lan extends LanInstances {
  import Id._

  implicit def lanApplicative[G[_]:Functor, H[_]:Applicative]: Applicative[Lan[G, H, ?]] =
    new Applicative[Lan[G, H, ?]] with LanApply[G, H] {
      def G = implicitly
      def H = implicitly
      def point[A](a: => A) = new Lan[G,H,A] {
        type I = Unit
        val v = Applicative[H].point(())
        def f(gi: G[I]) = a
      }
    }

  /**
   * `fromLan` and `toLan` witness an adjunction from `Lan[G,_,_]` to `Compose[G,_,_]`:
   */
  def fromLan[F[_], G[_], H[_], B](h: H[B])(s: Lan[G, H, ?] ~> F): F[G[B]] =
    s(glan(h))

  /** The natural transformation that defines a left Kan extension */
  def glan[G[_], H[_], A](h: H[A]): Lan[G, H, G[A]] =
    new Lan[G, H, G[A]] {
      type I = A
      val v = h
      def f(gi: G[I]) = gi
    }

  def adjointToLan[F[_], G[_], A](ga: G[A])(implicit A: Adjunction[F, G]): Lan[F, Id, A] =
    new Lan[F, Id, A] {
      type I = G[A]
      val v = ga
      def f(gi: F[I]) = A.counit(gi)
    }

  def lanToAdjoint[F[_], G[_], A](lan: Lan[F,Id,A])(implicit A: Adjunction[F, G]): G[A] =
    A.leftAdjunct(lan.v)(lan.f)

  def composedAdjointToLan[F[_], G[_], H[_], A](h: H[G[A]])(
    implicit A: Adjunction[F, G]): Lan[F, H, A] = new Lan[F, H, A] {
      type I = G[A]
      val v = h
      def f(fi: F[I]) = A.counit(fi)
    }
}

sealed abstract class LanInstances0 {
  implicit def lanFunctor[F[_], G[_]]: Functor[Lan[F, G, ?]] =
    new LanFunctor[F, G] { }
}

sealed abstract class LanInstances extends LanInstances0 {
  implicit def lanApply[F[_]: Functor, G[_]: Apply]: Apply[Lan[F, G, ?]] =
    new LanApply[F, G] {
      def G = implicitly
      def H = implicitly
    }
}

private trait LanFunctor[G[_], H[_]] extends Functor[Lan[G, H, ?]] {
  override final def map[A, B](lan: Lan[G, H, A])(g: A => B) = lan map g
}

private trait LanApply[G[_], H[_]] extends Apply[Lan[G, H, ?]] with LanFunctor[G, H] {
  def G: Functor[G]
  def H: Apply[H]

  private[this] abstract class Internal[A] {
    type T
    def value: A
  }

  def ap[A,B](x: => Lan[G, H, A])(xf: => Lan[G, H, A => B]) = new Lan[G, H, B] {
    val xfp = new Internal[Lan[G, H, A => B]] {
      lazy val value = xf
      type T = value.I
    }
    val xp = new Internal[Lan[G,H,A]] {
      lazy val value = x
      type T = value.I
    }
    type I = (xfp.T, xp.T)
    private[this] val vc = Need(H.tuple2(xfp.value.v, xp.value.v))
    def v = vc.value
    def f(gi: G[I]) = xfp.value.f(G.map(gi)(_._1))(xp.value.f(G.map(gi)(_._2)))
  }
}

Other Scala examples (source code examples)

Here is a short list of links related to this Scala Kan.scala source code file:

... this post is sponsored by my books ...

#1 New Release!

FP Best Seller

 

new blog posts

 

Copyright 1998-2024 Alvin Alexander, alvinalexander.com
All Rights Reserved.

A percentage of advertising revenue from
pages under the /java/jwarehouse URI on this website is
paid back to open source projects.