alvinalexander.com | career | drupal | java | mac | mysql | perl | scala | uml | unix  

Scala example source code file (Liskov.scala)

This example Scala source code file (Liskov.scala) is included in the alvinalexander.com "Java Source Code Warehouse" project. The intent of this project is to help you "Learn Scala by Example" TM.

Learn more about this Scala project at its project page.

Java - Scala tags/keywords

The Liskov.scala Scala example source code

package scalaz

/**
 * Liskov substitutability: A better `<:<`
 *
 * `A <: B` holds whenever `A` could be used in any negative context that expects a `B`.
 * (e.g. if you could pass an `A` into any function that expects a `B`.)
 */
sealed abstract class Liskov[-A, +B] {
  def apply(a: A): B = Liskov.witness(this)(a)

  def subst[F[-_]](p: F[B]): F[A]

  final def *[+[+_, +_], C, D](that: Liskov[C, D]): Liskov[A + C, B + D] = Liskov.lift2(this, that)

  final def andThen[C](that: Liskov[B, C]): Liskov[A, C] = Liskov.trans(that, this)

  final def compose[C](that: Liskov[C, A]): Liskov[C, B] = Liskov.trans(this, that)

  def onF[X](fa: X => A): X => B = Liskov.co2_2[Function1, B, X, A](this)(fa)
}

sealed abstract class LiskovInstances {
  import Liskov._

  /**Subtyping forms a category */
  implicit val liskov: Category[<~<] = new Category[<~<] {
    def id[A]: (A <~< A) = refl[A]

    def compose[A, B, C](bc: B <~< C, ab: A <~< B): (A <~< C) = trans(bc, ab)
  }
}

object Liskov extends LiskovInstances {

  /**A convenient type alias for Liskov */
  type <~<[-A, +B] = Liskov[A, B]

  /**A flipped alias, for those used to their arrows running left to right */
  type >~>[+B, -A] = Liskov[A, B]

  /**Lift Scala's subtyping relationship */
  implicit def isa[A, B >: A]: A <~< B = new (A <~< B) {
    def subst[F[-_]](p: F[B]): F[A] = p
  }

  /**We can witness equality by using it to convert between types */
  implicit def witness[A, B](lt: A <~< B): A => B = {
    type f[-X] = X => B
    lt.subst[f](identity)
  }

  /**Subtyping is reflexive */
  implicit def refl[A]: (A <~< A) = new (A <~< A) {
    def subst[F[-_]](p: F[A]): F[A] = p
  }

  /**Subtyping is transitive */
  def trans[A, B, C](f: B <~< C, g: A <~< B): A <~< C =
    g.subst[λ[`-α` => α <~< C]](f)

  /**We can lift subtyping into any covariant type constructor */
  def co[T[+_], A, A2](a: A <~< A2): (T[A] <~< T[A2]) =
    a.subst[λ[`-α` => T[α] <~< T[A2]]](refl)

  def co2[T[+_, _], Z, A, B](a: A <~< Z): T[A, B] <~< T[Z, B] =
    a.subst[λ[`-α` => T[α, B] <~< T[Z, B]]](refl)

  def co2_2[T[_, +_], Z, A, B](a: B <~< Z): T[A, B] <~< T[A, Z] =
    a.subst[λ[`-α` => T[A, α] <~< T[A, Z]]](refl)

  def co3[T[+_, _, _], Z, A, B, C](a: A <~< Z): T[A, B, C] <~< T[Z, B, C] =
    a.subst[λ[`-α` => T[α, B, C] <~< T[Z, B, C]]](refl)

  def co4[T[+_, _, _, _], Z, A, B, C, D](a: A <~< Z): T[A, B, C, D] <~< T[Z, B, C, D] =
    a.subst[λ[`-α` => T[α, B, C, D] <~< T[Z, B, C, D]]](refl)

  /**lift2(a,b) = co1_2(a) compose co2_2(b) */
  def lift2[T[+_, +_], A, A2, B, B2](
    a: A <~< A2,
    b: B <~< B2
  ): (T[A, B] <~< T[A2, B2]) = {
    type a[-X] = T[X, B2] <~< T[A2, B2]
    type b[-X] = T[A, X] <~< T[A2, B2]
    b.subst[b](a.subst[a](refl))
  }

  /**lift3(a,b,c) = co1_3(a) compose co2_3(b) compose co3_3(c) */
  def lift3[T[+_, +_, +_], A, A2, B, B2, C, C2](
    a: A <~< A2,
    b: B <~< B2,
    c: C <~< C2
  ): (T[A, B, C] <~< T[A2, B2, C2]) = {
    type a[-X] = T[X, B2, C2] <~< T[A2, B2, C2]
    type b[-X] = T[A, X, C2] <~< T[A2, B2, C2]
    type c[-X] = T[A, B, X] <~< T[A2, B2, C2]
    c.subst[c](b.subst[b](a.subst[a](refl)))
  }

  /**lift4(a,b,c,d) = co1_3(a) compose co2_3(b) compose co3_3(c) compose co4_4(d) */
  def lift4[T[+_, +_, +_, +_], A, A2, B, B2, C, C2, D, D2](
    a: A <~< A2,
    b: B <~< B2,
    c: C <~< C2,
    d: D <~< D2
  ): (T[A, B, C, D] <~< T[A2, B2, C2, D2]) = {
    type a[-X] = T[X, B2, C2, D2] <~< T[A2, B2, C2, D2]
    type b[-X] = T[A, X, C2, D2] <~< T[A2, B2, C2, D2]
    type c[-X] = T[A, B, X, D2] <~< T[A2, B2, C2, D2]
    type d[-X] = T[A, B, C, X] <~< T[A2, B2, C2, D2]
    d.subst[d](c.subst[c](b.subst[b](a.subst[a](refl))))
  }

  /**We can lift subtyping into any contravariant type constructor */
  def contra[T[-_], A, A2](a: A <~< A2): (T[A2] <~< T[A]) =
    a.subst[λ[`-α` => T[A2] <~< T[α]]](refl)

  // binary
  def contra1_2[T[-_, _], Z, A, B](a: A <~< Z): (T[Z, B] <~< T[A, B]) =
    a.subst[λ[`-α` => T[Z, B] <~< T[α, B]]](refl)

  def contra2_2[T[_, -_], Z, A, B](a: B <~< Z): (T[A, Z] <~< T[A, B]) =
    a.subst[λ[`-α` => T[A, Z] <~< T[A, α]]](refl)

  // ternary
  def contra1_3[T[-_, _, _], Z, A, B, C](a: A <~< Z): (T[Z, B, C] <~< T[A, B, C]) =
    a.subst[λ[`-α` => T[Z, B, C] <~< T[α, B, C]]](refl)

  def contra2_3[T[_, -_, _], Z, A, B, C](a: B <~< Z): (T[A, Z, C] <~< T[A, B, C]) =
    a.subst[λ[`-α` => T[A, Z, C] <~< T[A, α, C]]](refl)

  def contra3_3[T[_, _, -_], Z, A, B, C](a: C <~< Z): (T[A, B, Z] <~< T[A, B, C]) =
    a.subst[λ[`-α` => T[A, B, Z] <~< T[A, B, α]]](refl)

  def contra1_4[T[-_, _, _, _], Z, A, B, C, D](a: A <~< Z): (T[Z, B, C, D] <~< T[A, B, C, D]) =
    a.subst[λ[`-α` => T[Z, B, C, D] <~< T[α, B, C, D]]](refl)

  def contra2_4[T[_, -_, _, _], Z, A, B, C, D](a: B <~< Z): (T[A, Z, C, D] <~< T[A, B, C, D]) =
    a.subst[λ[`-α` => T[A, Z, C, D] <~< T[A, α, C, D]]](refl)

  def contra3_4[T[_, _, -_, _], Z, A, B, C, D](a: C <~< Z): (T[A, B, Z, D] <~< T[A, B, C, D]) =
    a.subst[λ[`-α` => T[A, B, Z, D] <~< T[A, B, α, D]]](refl)

  def contra4_4[T[_, _, _, -_], Z, A, B, C, D](a: D <~< Z): (T[A, B, C, Z] <~< T[A, B, C, D]) =
    a.subst[λ[`-α` => T[A, B, C, Z] <~< T[A, B, C, α]]](refl)

  /**Lift subtyping into a Function1-like type
   * liftF1(a,r) = contra1_2(a) compose co2_2(b)
   */
  def liftF1[F[-_, +_], A, A2, R, R2](
    a: A <~< A2,
    r: R <~< R2
  ): (F[A2, R] <~< F[A, R2]) = {
    type a[-X] = F[A2, R2] <~< F[X, R2]
    type r[-X] = F[A2, X] <~< F[A, R2]
    r.subst[r](a.subst[a](refl))
  }

  /**Lift subtyping into a function
   * liftF2(a,b,r) = contra1_3(a) compose contra2_3(b) compose co3_3(c)
   */
  def liftF2[F[-_, -_, +_], A, A2, B, B2, R, R2](
    a: A <~< A2,
    b: B <~< B2,
    r: R <~< R2
  ): (F[A2, B2, R] <~< F[A, B, R2]) = {
    type a[-X] = F[A2, B2, R2] <~< F[X, B2, R2]
    type b[-X] = F[A2, B2, R2] <~< F[A, X, R2]
    type r[-X] = F[A2, B2, X] <~< F[A, B, R2]
    r.subst[r](b.subst[b](a.subst[a](refl)))
  }

  /**Lift subtyping into a function
   * liftF3(a,b,c,r) = contra1_4(a) compose contra2_4(b) compose contra3_4(c) compose co3_4(d)
   */
  def liftF3[F[-_, -_, -_, +_], A, A2, B, B2, C, C2, R, R2](
     a: A <~< A2,
     b: B <~< B2,
     c: C <~< C2,
     r: R <~< R2
  ): (F[A2, B2, C2, R] <~< F[A, B, C, R2]) = {
    type a[-X] = F[A2, B2, C2, R2] <~< F[X, B2, C2, R2]
    type b[-X] = F[A2, B2, C2, R2] <~< F[A, X, C2, R2]
    type c[-X] = F[A2, B2, C2, R2] <~< F[A, B, X, R2]
    type r[-X] = F[A2, B2, C2, X] <~< F[A, B, C, R2]
    r.subst[r](c.subst[c](b.subst[b](a.subst[a](refl))))
  }

  /**Lift subtyping into a function */
  def liftF4[F[-_, -_, -_, -_, +_], A, A2, B, B2, C, C2, D, D2, R, R2](
     a: A <~< A2,
     b: B <~< B2,
     c: C <~< C2,
     d: D <~< D2,
     r: R <~< R2
   ): (F[A2, B2, C2, D2, R] <~< F[A, B, C, D, R2]) = {
    type a[-X] = F[A2, B2, C2, D2, R2] <~< F[X, B2, C2, D2, R2]
    type b[-X] = F[A2, B2, C2, D2, R2] <~< F[A, X, C2, D2, R2]
    type c[-X] = F[A2, B2, C2, D2, R2] <~< F[A, B, X, D2, R2]
    type d[-X] = F[A2, B2, C2, D2, R2] <~< F[A, B, C, X, R2]
    type r[-X] = F[A2, B2, C2, D2, X] <~< F[A, B, C, D, R2]
    r.subst[r](d.subst[d](c.subst[c](b.subst[b](a.subst[a](refl)))))
  }

  /**If A <: B and B :> A then A = B

  def bracket[A,B](
    ab : A <~< B,
    ba : A >~> B
  ): Leibniz[A,B] = Leibniz.force[A,B]

   */

  /**Unsafely force a claim that A is a subtype of B */
  def force[A, B]: A <~< B =
    new (A <~< B) {
      def subst[F[-_]](p: F[B]): F[A] = p.asInstanceOf[F[A]]
    }


  def unco[F[_] : Injective, Z, A](
    a: F[A] <~< F[Z]
  ): (A <~< Z) = force[A, Z]

  def unco2_1[F[+_, _] : Injective2, Z, A, B](
    a: F[A, B] <~< F[Z, B]
  ): (A <~< Z) = force[A, Z]

  def unco2_2[F[_, +_] : Injective2, Z, A, B](
    a: F[A, B] <~< F[A, Z]
  ): (B <~< Z) = force[B, Z]

  def uncontra[F[-_] : Injective, Z, A](
    a: F[A] <~< F[Z]
  ): (Z <~< A) = force[Z, A]

  def uncontra2_1[F[-_, _] : Injective2, Z, A, B](
    a: F[A, B] <~< F[Z, B]
  ): (Z <~< A) = force[Z, A]

  def uncontra2_2[F[_, -_] : Injective2, Z, A, B](
    a: F[A, B] <~< F[A, Z]
  ): (Z <~< B) = force[Z, B]
}

Other Scala examples (source code examples)

Here is a short list of links related to this Scala Liskov.scala source code file:

... this post is sponsored by my books ...

#1 New Release!

FP Best Seller

 

new blog posts

 

Copyright 1998-2024 Alvin Alexander, alvinalexander.com
All Rights Reserved.

A percentage of advertising revenue from
pages under the /java/jwarehouse URI on this website is
paid back to open source projects.