alvinalexander.com | career | drupal | java | mac | mysql | perl | scala | uml | unix  

Scala example source code file (MonoidCoproduct.scala)

This example Scala source code file (MonoidCoproduct.scala) is included in the alvinalexander.com "Java Source Code Warehouse" project. The intent of this project is to help you "Learn Scala by Example" TM.

Learn more about this Scala project at its project page.

Java - Scala tags/keywords

equal, monoid, nothing, vector

The MonoidCoproduct.scala Scala example source code

package scalaz

import scalaz.syntax.monoid._
import scalaz.syntax.foldable._
import scalaz.std.tuple._
import scalaz.std.vector._

/**
 * The coproduct (or free product) of monoids `M` and `N`.
 * Conceptually this is an alternating list of `M` and `N` values, with
 * the identity as the empty list, and composition as list concatenation that
 * combines adjacent elements when possible.
 */
sealed class :+:[+M, +N](private val rep: Vector[M \/ N]) {
  /** The associative operation of the monoid coproduct */
  def |+|[A >: M : Monoid, B >: N : Monoid](m: A :+: B): A :+: B = {
    @annotation.tailrec
    def go(r1: Vector[A \/ B], r2: Vector[A \/ B]): Vector[A \/ B] =
       (r1, r2) match {
         case (Vector(), es) => es
         case (es, Vector()) => es
         case (v1, v2) => (v1.last, v2.head) match {
           case (-\/(m1), -\/(m2)) => go(v1.init, -\/(m1 |+| m2) +: v2.tail)
           case (\/-(n1), \/-(n2)) => go(v1.init, \/-(n1 |+| n2) +: v2.tail)
           case _ => (v1 ++ v2)
         }
       }
    new :+:(go(rep, m.rep))
  }

  /** Append a value from the left monoid */
  def appendLeft[A >: M : Monoid, B >: N : Monoid](m: A) : A :+: B =
    |+|[A,B](:+:.inL(m))

  /** Append a value from the right monoid */
  def appendRight[A >: M : Monoid, B >: N : Monoid](n: B): A :+: B =
    |+|[A,B](:+:.inR(n))

  /** Prepend a value from the left monoid */
  def prependLeft[A >: M : Monoid, B >: N : Monoid](m: A): A :+: B =
    :+:.inL(m) |+| (this:(A :+: B))

  /** Prepend a value from the right monoid */
  def prependRight[A >: M : Monoid, B >: N : Monoid](n: B): A :+: B =
    :+:.inR(n) |+| (this:(A :+: B))

  /** Project out the value in the left monoid */
  def left[A >: M : Monoid]: A =
    rep.foldLeft(mzero[A]) { (m, e) =>
      m |+| e.fold(a => a, _ => mzero[A])
    }

  /** Project out the value in the right monoid */
  def right[A >: N : Monoid]: A =
    rep.foldLeft(mzero[A]) { (n, e) =>
      n |+| e.fold(_ => mzero[A], a => a)
    }

  /** Project out both monoids individually */
  def both[A >: M : Monoid, B >: N : Monoid]: (A, B) =
    fold(m => (m, mzero[B]), n => (mzero[A], n))

  /** A homomorphism to a monoid `Z` (if `f` and `g` are homomorphisms). */
  def fold[Z:Monoid](f: M => Z, g: N => Z): Z =
    rep.foldMap(_.fold(f, g))

  /**
   * Take a value from the coproduct monoid where each monoid acts on the
   * other, and untangle into a pair of values. Before being folded into the answer
   * an `N` value is combined with the sum of the `M` values to its left via `g` and
   * an `M` value is combined with the sum of the `N` values to its left via `f`.
   * This allows you to add up `N` values while having the opportunity to "track"
   * an evolving `M` value, and vice versa.
   */
  def untangle[A >: M : Monoid, B >: N: Monoid]
    (f: (B, A) => A, g: (A, B) => B): (A, B) =
      rep.foldLeft(mzero[(A, B)]) {
        case ((curm, curn), -\/(m)) =>
          (curm |+| f(curn, m), curn)
        case ((curm, curn), \/-(n)) =>
          (curm, curn |+| g(curm, n))
      }

  /**
   * Like `untangle`, except `M` values are simply combined without regard to the
   * `N` values to the left of it.
   */
  def untangleLeft[A >: M : Monoid, B >: N : Monoid](f: (A, B) => B): (A, B) =
    untangle[A,B]((_, m) => m, f)

  /**
   * Like `untangle`, except `N` values are simply combined without regard to the
   * `N` values to the left of it.
   */
  def untangleRight[A >: M : Monoid, B >: N : Monoid](f: (B, A) => A): (A, B) =
    untangle[A,B](f, (_, n) => n)

}

object :+: {
  import \/._

  def inL[A](a: A): A :+: Nothing = new :+:(Vector(left(a)))
  def inR[A](a: A): Nothing :+: A = new :+:(Vector(right(a)))

  /** The identity of the monoid coproduct */
  def empty[M,N]: M :+: N = new :+:(Vector())

  implicit def monoidCoproductEqual[M: Equal, N: Equal]: Equal[M :+: N] =
    Equal.equalBy(_.rep)

  implicit def instance[M:Monoid,N:Monoid]: Monoid[M :+: N] = new Monoid[M :+: N] {
    val zero = empty
    def append(a: M :+: N, b: => M :+: N) = a |+| b
  }
}

Other Scala examples (source code examples)

Here is a short list of links related to this Scala MonoidCoproduct.scala source code file:

... this post is sponsored by my books ...

#1 New Release!

FP Best Seller

 

new blog posts

 

Copyright 1998-2024 Alvin Alexander, alvinalexander.com
All Rights Reserved.

A percentage of advertising revenue from
pages under the /java/jwarehouse URI on this website is
paid back to open source projects.