|
Scala example source code file (Unapply.scala)
The Unapply.scala Scala example source codepackage scalaz import scala.annotation._ import Leibniz.{===, refl} /** * Represents a type `MA` that has been destructured into as a type constructor `M[_]` * applied to type `A`, along with a corresponding type class instance `TC[M]`. * * The implicit conversions in the companion object provide a means to obtain type class * instances for partially applied type constructors, in lieu of direct compiler support * as described in [[https://issues.scala-lang.org/browse/SI-2712 SI-2712]]. * * {{{ * // Directly depending on Applicative[G] * def traverse[G[_], B](f: A => G[B])(implicit G: Applicative[G]): G[F[B]] = * G.traverse(self)(f) * * // Indirect lookup of the Applicative instance * def traverseI[GB](f: A => GB)(implicit G: Unapply[Applicative, GB]): G.M[F[G.A]] /*G[F[B]*/ = { * G.TC.traverse(self)(a => G(f(a))) * } * * // Deforested version of traverseI * def traverseI2[GB](f: A => GB)(implicit G: Unapply[Applicative, GB]): G.M[F[G.A]] /*G[F[B]*/ = { * G.TC.traverse(self)(G.leibniz.onF(f)) * } * * // Old usage * def stateTraverse1 { * import scalaz._, Scalaz._ * import State.{State, stateMonad} * val ls = List(1, 2, 3) * val traverseOpt: Option[List[Int]] = ls.traverse(a => Some(a)) * val traverseState: State[Int, List[Int]] = ls.traverse[State[Int, ?], Int](a => State((x: Int) => (x + 1, a))) * } * * // New usage * def stateTraverse2 { * import scalaz._, Scalaz._ * val ls = List(1, 2, 3) * val traverseOpt: Option[List[Int]] = ls.traverseI(a => some(a)) * val traverseState = ls.traverseI(a => State((x: Int) => (x + 1, a))) * } * * }}} * * Credits to Miles Sabin. */ @implicitNotFound("Implicit not found: scalaz.Unapply[${TC}, ${MA}]. Unable to unapply type `${MA}` into a type constructor of kind `M[_]` that is classified by the type class `${TC}`. Check that the type class is defined by compiling `implicitly[${TC}[type constructor]]` and review the implicits in object Unapply, which only cover common type 'shapes.'") trait Unapply[TC[_[_]], MA] { /** The type constructor */ type M[_] /** The type that `M` was applied to */ type A /** The instance of the type class */ def TC: TC[M] /** Evidence that MA =:= M[A] */ def leibniz: MA === M[A] /** Compatibility. */ @inline final def apply(ma: MA): M[A] = leibniz(ma) } sealed abstract class Unapply_5 { /**Unpack a value of type `M0[F[_], A0, B0, C0, D0, E0]` into types `[e]M0[F, A0, B0, C0, D0, e]` and `E0`, given an instance of `TC` */ implicit def unapplyMFABCDE5[TC[_[_]], F[_], M0[F[_], _, _, _, _, _], A0, B0, C0, D0, E0](implicit TC0: TC[M0[F, A0, B0, C0, D0, ?]]): Unapply[TC, M0[F, A0, B0, C0, D0, E0]] { type M[X] = M0[F, A0, B0, C0, D0, X] type A = E0 } = new Unapply[TC, M0[F, A0, B0, C0, D0, E0]] { type M[X] = M0[F, A0, B0, C0, D0, X] type A = E0 def TC = TC0 def leibniz = refl } } sealed abstract class Unapply_4 extends Unapply_5 { // /** Unpack a value of type `A0` into type `[a]A0`, given a instance of `TC` */ implicit def unapplyA[TC[_[_]], A0](implicit TC0: TC[λ[α => A0]]): Unapply[TC, A0] { type M[X] = A0 type A = A0 } = new Unapply[TC, A0] { type M[X] = A0 type A = A0 def TC = TC0 def leibniz = refl } } sealed abstract class Unapply_3 extends Unapply_4 { /**Unpack a value of type `M0[F[_], A0, A0, B0]` into types `[a]M0[F, a, a, B0]` and `A0`, given an instance of `TC` */ implicit def unapplyMFABC1and2[TC[_[_]], F[_], M0[F[_], _, _, _], A0, B0](implicit TC0: TC[λ[α => M0[F, α, α, B0]]]): Unapply[TC, M0[F, A0, A0, B0]] { type M[X] = M0[F, X, X, B0] type A = A0 } = new Unapply[TC, M0[F, A0, A0, B0]] { type M[X] = M0[F, X, X, B0] type A = A0 def TC = TC0 def leibniz = refl } /**Unpack a value of type `M0[F[_], A0, B0, C0]` into types `[c]M0[F, A0, B0, c]` and `C0`, given an instance of `TC` */ implicit def unapplyMFABC3[TC[_[_]], F[_], M0[F[_], _, _, _], A0, B0, C0](implicit TC0: TC[M0[F, A0, B0, ?]]): Unapply[TC, M0[F, A0, B0, C0]] { type M[X] = M0[F, A0, B0, X] type A = C0 } = new Unapply[TC, M0[F, A0, B0, C0]] { type M[X] = M0[F, A0, B0, X] type A = C0 def TC = TC0 def leibniz = refl } } sealed abstract class Unapply_2 extends Unapply_3 { // Things get tricky with type State[S, A] = StateT[Id, S, A], both unapplyMAB2 and unapplyMFAB2 are applicable // Without characterizing this fully, I'm using the standard implicit prioritization to avoid this. /**Unpack a value of type `M0[F[_], A0, B0]` into types `[a]M0[F, a, B0]` and `A0`, given an instance of `TC` */ implicit def unapplyMFAB1[TC[_[_]], F[_], M0[F[_], _, _], A0, B0](implicit TC0: TC[M0[F, ?, B0]]): Unapply[TC, M0[F, A0, B0]] { type M[X] = M0[F, X, B0] type A = A0 } = new Unapply[TC, M0[F, A0, B0]] { type M[X] = M0[F, X, B0] type A = A0 def TC = TC0 def leibniz = refl } /**Unpack a value of type `M0[F[_], A0, B0]` into types `[b]M0[F, A0, b]` and `B0`, given an instance of `TC` */ implicit def unapplyMFAB2[TC[_[_]], F[_], M0[F[_], _, _], A0, B0](implicit TC0: TC[M0[F, A0, ?]]): Unapply[TC, M0[F, A0, B0]] { type M[X] = M0[F, A0, X] type A = B0 } = new Unapply[TC, M0[F, A0, B0]] { type M[X] = M0[F, A0, X] type A = B0 def TC = TC0 def leibniz = refl } } sealed abstract class Unapply_1 extends Unapply_2 { /**Unpack a value of type `M0[A0, B0, C0, D0, E0, F0, G0]` into types `[g]M0[A0, B0, C0, D0, E0, F0, g]` and `G0`, given an instance of `TC` */ implicit def unapplyMABCDEFG7[TC[_[_]], M0[_, _, _, _, _, _, _], A0, B0, C0, D0, E0, F0, G0](implicit TC0: TC[M0[A0, B0, C0, D0, E0, F0, ?]]): Unapply[TC, M0[A0, B0, C0, D0, E0, F0, G0]] { type M[X] = M0[A0, B0, C0, D0, E0, F0, X] type A = G0 } = new Unapply[TC, M0[A0, B0, C0, D0, E0, F0, G0]] { type M[X] = M0[A0, B0, C0, D0, E0, F0, X] type A = G0 def TC = TC0 def leibniz = refl } /**Unpack a value of type `M0[A0, B0, C0, D0, E0, F0]` into types `[f]M0[A0, B0, C0, D0, E0, f]` and `F0`, given an instance of `TC` */ implicit def unapplyMABCDEF6[TC[_[_]], M0[_, _, _, _, _, _], A0, B0, C0, D0, E0, F0](implicit TC0: TC[M0[A0, B0, C0, D0, E0, ?]]): Unapply[TC, M0[A0, B0, C0, D0, E0, F0]] { type M[X] = M0[A0, B0, C0, D0, E0, X] type A = F0 } = new Unapply[TC, M0[A0, B0, C0, D0, E0, F0]] { type M[X] = M0[A0, B0, C0, D0, E0, X] type A = F0 def TC = TC0 def leibniz = refl } /**Unpack a value of type `M0[A0, B0, C0, D0, E0]` into types `[e]M0[A0, B0, C0, D0, e]` and `E0`, given an instance of `TC` */ implicit def unapplyMABCDE5[TC[_[_]], M0[_, _, _, _, _], A0, B0, C0, D0, E0](implicit TC0: TC[M0[A0, B0, C0, D0, ?]]): Unapply[TC, M0[A0, B0, C0, D0, E0]] { type M[X] = M0[A0, B0, C0, D0, X] type A = E0 } = new Unapply[TC, M0[A0, B0, C0, D0, E0]] { type M[X] = M0[A0, B0, C0, D0, X] type A = E0 def TC = TC0 def leibniz = refl } /**Unpack a value of type `M0[A0, B0, C0, D0]` into types `[d]M0[A0, B0, C0, d]` and `D0`, given an instance of `TC` */ implicit def unapplyMABCD4[TC[_[_]], M0[_, _, _, _], A0, B0, C0, D0](implicit TC0: TC[M0[A0, B0, C0, ?]]): Unapply[TC, M0[A0, B0, C0, D0]] { type M[X] = M0[A0, B0, C0, X] type A = D0 } = new Unapply[TC, M0[A0, B0, C0, D0]] { type M[X] = M0[A0, B0, C0, X] type A = D0 def TC = TC0 def leibniz = refl } /**Unpack a value of type `M0[A0, B0, C0]` into types `[c]M0[A0, B0, c]` and `C0`, given an instance of `TC` */ implicit def unapplyMABC3[TC[_[_]], M0[_, _, _], A0, B0, C0](implicit TC0: TC[M0[A0, B0, ?]]): Unapply[TC, M0[A0, B0, C0]] { type M[X] = M0[A0, B0, X] type A = C0 } = new Unapply[TC, M0[A0, B0, C0]] { type M[X] = M0[A0, B0, X] type A = C0 def TC = TC0 def leibniz = refl } } sealed abstract class Unapply_0 extends Unapply_1 { /** Unpack a value of type `M0[F0, A0]` where `F0: * -> *` into * types `[a]M0[F0, a]` and `A`, given an instance of `TC` */ implicit def unapplyMFA[TC[_[_]], M0[_[_], _], F0[_], A0](implicit TC0: TC[M0[F0, ?]]): Unapply[TC, M0[F0, A0]] { type M[X] = M0[F0, X] type A = A0 } = new Unapply[TC, M0[F0, A0]] { type M[X] = M0[F0, X] type A = A0 def TC = TC0 def leibniz = refl } /**Unpack a value of type `M0[A0, B0]` into types `[a]M0[a, B0]` and `A`, given an instance of `TC` */ implicit def unapplyMAB1[TC[_[_]], M0[_, _], A0, B0](implicit TC0: TC[M0[?, B0]]): Unapply[TC, M0[A0, B0]] { type M[X] = M0[X, B0] type A = A0 } = new Unapply[TC, M0[A0, B0]] { type M[X] = M0[X, B0] type A = A0 def TC = TC0 def leibniz = refl } /**Unpack a value of type `M0[A0, B0]` into types `[b]M0[A0, b]` and `B`, given an instance of `TC` */ implicit def unapplyMAB2[TC[_[_]], M0[_, _], A0, B0](implicit TC0: TC[M0[A0, ?]]): Unapply[TC, M0[A0, B0]] { type M[X] = M0[A0, X] type A = B0 } = new Unapply[TC, M0[A0, B0]] { type M[X] = M0[A0, X] type A = B0 def TC = TC0 def leibniz = refl } } object Unapply extends Unapply_0 { type AuxA[TC[_[_]], MA, A0] = Unapply[TC, MA] { type A = A0 } /** Fetch a well-typed `Unapply` for the given typeclass and type. */ def apply[TC[_[_]], MA](implicit U: Unapply[TC, MA]): U.type { type M[A] = U.M[A] type A = U.A } = U /** Unpack a value of type `M0[A0]` into types `M0` and `A0`, given a instance of `TC` */ implicit def unapplyMA[TC[_[_]], M0[_], A0](implicit TC0: TC[M0]): Unapply[TC, M0[A0]] { type M[X] = M0[X] type A = A0 } = new Unapply[TC, M0[A0]] { type M[X] = M0[X] type A = A0 def TC = TC0 def leibniz = refl } /** Turns a MonadTrans-like instance that has two params and turns it into an M[A] */ implicit def unapplyMTMAB[TC[_[_]], MT[_[_], _], MAB[_, _], A0, A1](implicit TC0: TC[MT[MAB[A0,?], ?]]): Unapply[TC, MT[MAB[A0, ?], A1]] { type M[X] = MT[MAB[A0, ?], X] type A = A1 } = new Unapply[TC, MT[MAB[A0, ?], A1]] { type M[X] = MT[MAB[A0, ?], X] type A = A1 def TC = TC0 def leibniz = Leibniz.refl } // TODO More! } trait Unapply2[TC[_[_, _]], MAB] { /** The type constructor */ type M[_, _] /** The first type that `M` was applied to */ type A /** The second type that `M` was applied to */ type B /** The instance of the type class */ def TC: TC[M] /** Evidence that MAB =:= M[A, B] */ def leibniz: MAB === M[A, B] /** Compatibility. */ @inline final def apply(ma: MAB): M[A, B] = leibniz(ma) } sealed abstract class Unapply2_0 { /**Unpack a value of type `M0[F[_], A0, B0]` into types `[a, b]=M0[F, a, b]`, `A0`, and 'B9', given an instance of `TC` */ implicit def unapplyMFAB[TC[_[_, _]], F[_], M0[F[_], _, _], A0, B0](implicit TC0: TC[M0[F, ?, ?]]): Unapply2[TC, M0[F, A0, B0]] { type M[X, Y] = M0[F, X, Y] type A = A0 type B = B0 } = new Unapply2[TC, M0[F, A0, B0]] { type M[X, Y] = M0[F, X, Y] type A = A0 type B = B0 def TC = TC0 def leibniz = refl } } object Unapply2 extends Unapply2_0 { /** Fetch a well-typed `Unapply2` for the given typeclass and type. */ def apply[TC[_[_, _]], MAB](implicit U: Unapply2[TC, MAB]): U.type { type M[X, Y] = U.M[X, Y] type A = U.A type B = U.B } = U /**Unpack a value of type `M0[A0, B0]` into types `M0`, `A`, and 'B', given an instance of `TC` */ implicit def unapplyMAB[TC[_[_, _]], M0[_, _], A0, B0](implicit TC0: TC[M0]): Unapply2[TC, M0[A0, B0]] { type M[X, Y] = M0[X, Y] type A = A0 type B = B0 } = new Unapply2[TC, M0[A0, B0]] { type M[X, Y] = M0[X, Y] type A = A0 type B = B0 def TC = TC0 def leibniz = refl } } trait Unapply21[TC[_[_, _], _], MAB]{ type M[_, _] type A type B def TC: TC[M, A] def leibniz: MAB === M[A, B] @inline final def apply(mabc: MAB): M[A, B] = leibniz(mabc) } object Unapply21 { /** Fetch a well-typed `Unapply21` for the given typeclass and type. */ def apply[TC[_[_, _], _], MAB](implicit U: Unapply21[TC, MAB]): U.type { type M[X, Y] = U.M[X, Y] type A = U.A type B = U.B } = U implicit def unapply210MFABC[TC[_[_, _], _], F[_,_], M0[_[_], _, _], A0, B0, C](implicit TC0: TC[λ[(α, β) => M0[F[α, ?], C, β]], A0]): Unapply21[TC, M0[F[A0, ?], C, B0]]{ type M[X, Y] = M0[F[X, ?], C, Y] type A = A0 type B = B0 } = new Unapply21[TC, M0[F[A0, ?], C, B0]]{ type M[X, Y] = M0[F[X, ?], C, Y] type A = A0 type B = B0 def TC = TC0 def leibniz = refl } } trait UnapplyProduct[TC[_[_]], MA, MB] { type M[X] type A type B def TC: TC[M] type MA_ = MA def _1(ma: MA): M[A] def _2(mb: MB): M[B] } object UnapplyProduct { import Isomorphism.<~> /** Fetch a well-typed `UnapplyProduct` for the given typeclass and types. */ def apply[TC[_[_]], MA, MB](implicit U: UnapplyProduct[TC, MA, MB]): U.type { type M[A] = U.M[A] type A = U.A type B = U.B } = U /** * This is a workaround that allows us to approximate multiple implicit * parameter sections (which Scala does not currently support). See this gist * by Miles Sabin for the original context: * * https://gist.github.com/milessabin/cadd73b7756fe4097ca0 * * The key idea is that we can use an intermediate type to capture the type * members of the two `Unapply` instances in such a way that we can refer to * them in the implicit parameter list. */ case class SingletonOf[T, U <: { type A; type M[_] }](widen: T { type A = U#A; type M[x] = U#M[x] }) object SingletonOf { implicit def mkSingletonOf[T <: { type A; type M[_] }](implicit t: T): SingletonOf[T, t.type] = SingletonOf(t) } implicit def unapply[TC[_[_]], MA0, MB0, U1 <: { type A; type M[_] }, U2 <: { type A; type M[_] }](implicit sU1: SingletonOf[Unapply[TC, MA0], U1], sU2: SingletonOf[Unapply[TC, MB0], U2], iso: U1#M <~> U2#M ): UnapplyProduct[TC, MA0, MB0] { type M[x] = U1#M[x] type A = U1#A type B = U2#A } = new UnapplyProduct[TC, MA0, MB0] { type M[x] = U1#M[x] type A = U1#A type B = U2#A def TC = sU1.widen.TC def _1(ma: MA0) = sU1.widen(ma) def _2(mb: MB0) = iso.from(sU2.widen(mb)) } } Other Scala examples (source code examples)Here is a short list of links related to this Scala Unapply.scala source code file: |
... this post is sponsored by my books ... | |
#1 New Release! |
FP Best Seller |
Copyright 1998-2024 Alvin Alexander, alvinalexander.com
All Rights Reserved.
A percentage of advertising revenue from
pages under the /java/jwarehouse
URI on this website is
paid back to open source projects.