alvinalexander.com | career | drupal | java | mac | mysql | perl | scala | uml | unix  

Scala example source code file (ScalazProperties.scala)

This example Scala source code file (ScalazProperties.scala) is included in the alvinalexander.com "Java Source Code Warehouse" project. The intent of this project is to help you "Learn Scala by Example" TM.

Learn more about this Scala project at its project page.

Java - Scala tags/keywords

applicative, apply, arbitrary, enum, equal, int, properties

The ScalazProperties.scala Scala example source code

package scalaz
package scalacheck

import org.scalacheck.{Arbitrary, Gen, Prop, Properties}
import Prop.forAll
import Scalaz._

/**
 * Scalacheck properties that should hold for instances of type classes defined in Scalaz Core.
 */
object ScalazProperties {
  private def newProperties(name: String)(f: Properties => Unit): Properties = {
    val p = new Properties(name)
    f(p)
    p
  }

  object equal {
    def commutativity[A](implicit A: Equal[A], arb: Arbitrary[A]) = forAll(A.equalLaw.commutative _)

    def reflexive[A](implicit A: Equal[A], arb: Arbitrary[A]) = forAll(A.equalLaw.reflexive _)

    def transitive[A](implicit A: Equal[A], arb: Arbitrary[A]) = forAll(A.equalLaw.transitive _)

    def naturality[A](implicit A: Equal[A], arb: Arbitrary[A]) = forAll(A.equalLaw.naturality _)

    def laws[A](implicit A: Equal[A], arb: Arbitrary[A]): Properties =
      newProperties("equal") { p =>
        p.property("commutativity") = commutativity[A]
        p.property("reflexive") = reflexive[A]
        p.property("transitive") = transitive[A]
        p.property("naturality") = naturality[A]
      }
  }

  object order {
    def antisymmetric[A](implicit A: Order[A], arb: Arbitrary[A]) =
      forAll(A.orderLaw.antisymmetric _)

    def transitiveOrder[A](implicit A: Order[A], arb: Arbitrary[A]) = forAll(A.orderLaw.transitiveOrder _)

    def orderAndEqualConsistent[A](implicit A: Order[A], arb: Arbitrary[A]) = forAll(A.orderLaw.orderAndEqualConsistent _)

    import scala.math.{Ordering => SOrdering}

    def scalaOrdering[A: Order: SOrdering: Arbitrary] = forAll((a1: A, a2: A) => Order[A].order(a1, a2) == Ordering.fromInt(SOrdering[A].compare(a1, a2)))

    def laws[A](implicit A: Order[A], arb: Arbitrary[A]): Properties =
      newProperties("order") { p =>
        p.include(equal.laws[A])
        p.property("antisymmetric") = antisymmetric[A]
        p.property("transitive order") = transitiveOrder[A]
        p.property("order and equal consistent") = orderAndEqualConsistent[A]
      }
  }

  object enum {
    def succpred[A](implicit A: Enum[A], arb: Arbitrary[A]) = forAll(A.enumLaw.succpred _)

    def predsucc[A](implicit A: Enum[A], arb: Arbitrary[A]) = forAll(A.enumLaw.predsucc _)

    def minmaxpred[A](implicit A: Enum[A]): Prop = A.enumLaw.minmaxpred

    def minmaxsucc[A](implicit A: Enum[A]): Prop = A.enumLaw.minmaxsucc

    private[this] val smallInt = Gen.choose(-100, 100)

    def succn[A](implicit A: Enum[A], arb: Arbitrary[A]) = forAll((x: A) => forAll(smallInt)(A.enumLaw.succn(x, _)))

    def predn[A](implicit A: Enum[A], arb: Arbitrary[A]) = forAll((x: A) => forAll(smallInt)(A.enumLaw.predn(x, _)))

    def succorder[A](implicit A: Enum[A], arb: Arbitrary[A]) = forAll(A.enumLaw.succorder _)

    def predorder[A](implicit A: Enum[A], arb: Arbitrary[A]) = forAll(A.enumLaw.predorder _)

    def laws[A](implicit A: Enum[A], arb: Arbitrary[A]): Properties =
      newProperties("enum") { p =>
        p.include(order.laws[A])
        p.property("predecessor then successor is identity") = succpred[A]
        p.property("successor then predecessor is identity") = predsucc[A]
        p.property("predecessor of the min is the max") = minmaxpred[A]
        p.property("successor of the max is the min") = minmaxsucc[A]
        p.property("n-successor is n-times successor") = succn[A]
        p.property("n-predecessor is n-times predecessor") = predn[A]
        p.property("successor is greater or equal") = succorder[A]
        p.property("predecessor is less or equal") = predorder[A]
      }
  }

  object semigroup {
    def associative[A](implicit A: Semigroup[A], eqa: Equal[A], arb: Arbitrary[A]) = forAll(A.semigroupLaw.associative _)

    def laws[A](implicit A: Semigroup[A], eqa: Equal[A], arb: Arbitrary[A]): Properties =
      newProperties("semigroup") { p =>
        p.property("associative") = associative[A]
      }
  }

  object monoid {
    def leftIdentity[A](implicit A: Monoid[A], eqa: Equal[A], arb: Arbitrary[A]) = forAll(A.monoidLaw.leftIdentity _)

    def rightIdentity[A](implicit A: Monoid[A], eqa: Equal[A], arb: Arbitrary[A]) = forAll(A.monoidLaw.rightIdentity _)

    def laws[A](implicit A: Monoid[A], eqa: Equal[A], arb: Arbitrary[A]): Properties =
      newProperties("monoid") { p =>
        p.include(semigroup.laws[A])
        p.property("left identity") = leftIdentity[A]
        p.property("right identity") = rightIdentity[A]
      }
  }

  object invariantFunctor {
    def identity[F[_], X](implicit F: InvariantFunctor[F], afx: Arbitrary[F[X]], ef: Equal[F[X]]) =
      forAll(F.invariantFunctorLaw.invariantIdentity[X] _)

    def composite[F[_], X, Y, Z](implicit F: InvariantFunctor[F], af: Arbitrary[F[X]], axy: Arbitrary[(X => Y)],
                                   ayz: Arbitrary[(Y => Z)], ayx: Arbitrary[(Y => X)], azy: Arbitrary[(Z => Y)], ef: Equal[F[Z]]) =
      forAll(F.invariantFunctorLaw.invariantComposite[X, Y, Z] _)

    def laws[F[_]](implicit F: InvariantFunctor[F], af: Arbitrary[F[Int]], axy: Arbitrary[(Int => Int)],
                   ef: Equal[F[Int]]): Properties =
      newProperties("invariantFunctor") { p =>
        p.property("identity") = identity[F, Int]
        p.property("composite") = composite[F, Int, Int, Int]
      }
  }

  object functor {
    def identity[F[_], X](implicit F: Functor[F], afx: Arbitrary[F[X]], ef: Equal[F[X]]) =
      forAll(F.functorLaw.identity[X] _)

    def composite[F[_], X, Y, Z](implicit F: Functor[F], af: Arbitrary[F[X]], axy: Arbitrary[(X => Y)],
                                   ayz: Arbitrary[(Y => Z)], ef: Equal[F[Z]]) =
      forAll(F.functorLaw.composite[X, Y, Z] _)

    def laws[F[_]](implicit F: Functor[F], af: Arbitrary[F[Int]], axy: Arbitrary[(Int => Int)],
                   ef: Equal[F[Int]]): Properties =
      newProperties("functor") { p =>
        p.include(invariantFunctor.laws[F])
        p.property("identity") = identity[F, Int]
        p.property("composite") = composite[F, Int, Int, Int]
      }
  }

  object profunctor {
    def identity[M[_,_], A, B](implicit M: Profunctor[M], mba: Arbitrary[M[A, B]], ef: Equal[M[A,B]]) =
      forAll(M.profunctorLaw.identity[A, B] _)

    def compose[M[_,_], A, B, C, D, E, F](implicit M: Profunctor[M], mab: Arbitrary[M[A, D]], fba: Arbitrary[(B => A)], fcb: Arbitrary[(C => B)], fde: Arbitrary[(D => E)], fef: Arbitrary[(E => F)], e: Equal[M[C, F]]) =
      forAll(M.profunctorLaw.composite[A, B, C, D, E, F] _ )

    def laws[M[_,_]](implicit F: Profunctor[M], af: Arbitrary[M[Int, Int]], itf: Arbitrary[(Int => Int)], e: Equal[M[Int, Int]]): Properties =
      newProperties("profunctor") { p =>
        p.property("identity") = identity[M, Int, Int]
        p.property("composite") = compose[M, Int, Int, Int, Int, Int, Int]
      }
  }

  object align {
    def collapse[F[_], A](implicit F: Align[F], E: Equal[F[A \&/ A]], A: Arbitrary[F[A]]): Prop =
      forAll(F.alignLaw.collapse[A] _)
    def laws[F[_]](implicit F: Align[F], af: Arbitrary[F[Int]],
                   e: Equal[F[Int]], ef: Equal[F[Int \&/ Int]]): Properties =
      newProperties("align") { p =>
        p.include(functor.laws[F])
        p.property("collapse") = collapse[F, Int]
      }
  }

  object apply {self =>
    def composition[F[_], X, Y, Z](implicit ap: Apply[F], afx: Arbitrary[F[X]], au: Arbitrary[F[Y => Z]],
                                   av: Arbitrary[F[X => Y]], e: Equal[F[Z]]) = forAll(ap.applyLaw.composition[X, Y, Z] _)

    def laws[F[_]](implicit F: Apply[F], af: Arbitrary[F[Int]],
                   aff: Arbitrary[F[Int => Int]], e: Equal[F[Int]]): Properties =
      newProperties("apply") { p =>
        p.include(functor.laws[F])
        p.property("composition") = self.composition[F, Int, Int, Int]
      }
  }

  object applicative {
    def identity[F[_], X](implicit f: Applicative[F], afx: Arbitrary[F[X]], ef: Equal[F[X]]) =
      forAll(f.applicativeLaw.identityAp[X] _)

    def homomorphism[F[_], X, Y](implicit ap: Applicative[F], ax: Arbitrary[X], af: Arbitrary[X => Y], e: Equal[F[Y]]) =
      forAll(ap.applicativeLaw.homomorphism[X, Y] _)

    def interchange[F[_], X, Y](implicit ap: Applicative[F], ax: Arbitrary[X], afx: Arbitrary[F[X => Y]], e: Equal[F[Y]]) =
      forAll(ap.applicativeLaw.interchange[X, Y] _)

    def mapApConsistency[F[_], X, Y](implicit ap: Applicative[F], ax: Arbitrary[F[X]], afx: Arbitrary[X => Y], e: Equal[F[Y]]) =
      forAll(ap.applicativeLaw.mapLikeDerived[X, Y] _)

    def laws[F[_]](implicit F: Applicative[F], af: Arbitrary[F[Int]],
                   aff: Arbitrary[F[Int => Int]], e: Equal[F[Int]]): Properties =
      newProperties("applicative") { p =>
        p.include(ScalazProperties.apply.laws[F])
        p.property("identity") = applicative.identity[F, Int]
        p.property("homomorphism") = applicative.homomorphism[F, Int, Int]
        p.property("interchange") = applicative.interchange[F, Int, Int]
        p.property("map consistent with ap") = applicative.mapApConsistency[F, Int, Int]
      }
  }

  object bind {
    def associativity[M[_], X, Y, Z](implicit M: Bind[M], amx: Arbitrary[M[X]], af: Arbitrary[(X => M[Y])],
                                     ag: Arbitrary[(Y => M[Z])], emz: Equal[M[Z]]) =
      forAll(M.bindLaw.associativeBind[X, Y, Z] _)

    def bindApConsistency[M[_], X, Y](implicit M: Bind[M], amx: Arbitrary[M[X]],
                                      af: Arbitrary[M[X => Y]], emy: Equal[M[Y]]) =
      forAll(M.bindLaw.apLikeDerived[X, Y] _)

    def laws[M[_]](implicit a: Bind[M], am: Arbitrary[M[Int]],
                   af: Arbitrary[Int => M[Int]], ag: Arbitrary[M[Int => Int]], e: Equal[M[Int]]): Properties =
      newProperties("bind") { p =>
        p.include(ScalazProperties.apply.laws[M])

        p.property("associativity") = bind.associativity[M, Int, Int, Int]
        p.property("ap consistent with bind") = bind.bindApConsistency[M, Int, Int]
      }
  }

  object bindRec {
    def tailrecBindConsistency[M[_], X](implicit M: BindRec[M], ax: Arbitrary[X], af: Arbitrary[X => M[X]],
                                        emx: Equal[M[X]]) =
      forAll(M.bindRecLaw.tailrecBindConsistency[X] _)

    def laws[M[_]](implicit a: BindRec[M], am: Arbitrary[M[Int]],
                   af: Arbitrary[Int => M[Int]], ag: Arbitrary[M[Int => Int]], e: Equal[M[Int]]): Properties =
      newProperties("bindRec") { p =>
        p.property("tailrecM is consistent with bind") = bindRec.tailrecBindConsistency[M, Int]
      }
  }

  object monad {
    def rightIdentity[M[_], X](implicit M: Monad[M], e: Equal[M[X]], a: Arbitrary[M[X]]) =
      forAll(M.monadLaw.rightIdentity[X] _)

    def leftIdentity[M[_], X, Y](implicit am: Monad[M], emy: Equal[M[Y]], ax: Arbitrary[X], af: Arbitrary[(X => M[Y])]) =
      forAll(am.monadLaw.leftIdentity[X, Y] _)

    def laws[M[_]](implicit a: Monad[M], am: Arbitrary[M[Int]],
                   af: Arbitrary[Int => M[Int]], ag: Arbitrary[M[Int => Int]], e: Equal[M[Int]]): Properties =
      newProperties("monad") { p =>
        p.include(applicative.laws[M])
        p.include(bind.laws[M])
        p.property("right identity") = monad.rightIdentity[M, Int]
        p.property("left identity") = monad.leftIdentity[M, Int, Int]
      }
  }

  object cobind {
    def cobindAssociative[F[_], A, B, C, D](implicit F: Cobind[F], D: Equal[D], fa: Arbitrary[F[A]],
                                            f: Arbitrary[F[A] => B], g: Arbitrary[F[B] => C], h: Arbitrary[F[C] => D]) =
      forAll(F.cobindLaw.cobindAssociative[A, B, C, D] _)

    def laws[F[_]](implicit a: Cobind[F], am: Arbitrary[F[Int]], e: Equal[F[Int]]): Properties =
      newProperties("cobind") { p =>
        p.include(functor.laws[F])
        p.property("cobind associative") = cobindAssociative[F, Int, Int, Int, Int]
      }
  }

  object comonad {
    def cobindLeftIdentity[F[_], A](implicit F: Comonad[F], F0: Equal[F[A]], fa: Arbitrary[F[A]]) =
      forAll(F.comonadLaw.cobindLeftIdentity[A] _)

    def cobindRightIdentity[F[_], A, B](implicit F: Comonad[F], F0: Equal[B], fa: Arbitrary[F[A]], f: Arbitrary[F[A] => B]) =
      forAll(F.comonadLaw.cobindRightIdentity[A, B] _)

    def laws[F[_]](implicit a: Comonad[F], am: Arbitrary[F[Int]],
                   af: Arbitrary[F[Int] => Int], e: Equal[F[Int]]): Properties =
      newProperties("comonad") { p =>
        p.include(cobind.laws[F])
        p.property("cobind left identity") = cobindLeftIdentity[F, Int]
        p.property("cobind right identity") = cobindRightIdentity[F, Int, Int]
      }
  }

  private def resizeProp(p: Prop, max: Int): Prop =
    Prop(params => p(params.withSize(params.size % (max + 1))))

  object traverse {
    def identityTraverse[F[_], X, Y](implicit f: Traverse[F], afx: Arbitrary[F[X]], axy: Arbitrary[X => Y], ef: Equal[F[Y]]) =
      forAll(f.traverseLaw.identityTraverse[X, Y] _)

    def purity[F[_], G[_], X](implicit f: Traverse[F], afx: Arbitrary[F[X]], G: Applicative[G], ef: Equal[G[F[X]]]) =
      forAll(f.traverseLaw.purity[G, X] _)

    def sequentialFusion[F[_], N[_], M[_], A, B, C](implicit fa: Arbitrary[F[A]], amb: Arbitrary[A => M[B]], bnc: Arbitrary[B => N[C]],
                                                      F: Traverse[F], N: Applicative[N], M: Applicative[M], MN: Equal[M[N[F[C]]]]): Prop =
      forAll(F.traverseLaw.sequentialFusion[N, M, A, B, C] _)

    def naturality[F[_], N[_], M[_], A](nat: (M ~> N))
                                       (implicit fma: Arbitrary[F[M[A]]], F: Traverse[F], N: Applicative[N], M: Applicative[M], NFA: Equal[N[F[A]]]): Prop =
      forAll(F.traverseLaw.naturality[N, M, A](nat) _)

    def parallelFusion[F[_], N[_], M[_], A, B](implicit fa: Arbitrary[F[A]], amb: Arbitrary[A => M[B]], anb: Arbitrary[A => N[B]],
                                               F: Traverse[F], N: Applicative[N], M: Applicative[M], MN: Equal[(M[F[B]], N[F[B]])]): Prop =
      forAll(F.traverseLaw.parallelFusion[N, M, A, B] _)

    def laws[F[_]](implicit fa: Arbitrary[F[Int]], F: Traverse[F], EF: Equal[F[Int]]): Properties =
      newProperties("traverse") { p =>
        p.include(functor.laws[F])
        p.include(foldable.laws[F])
        p.property("identity traverse") = identityTraverse[F, Int, Int]

        import std.list._, std.option._, std.stream._

        p.property("purity.option") = purity[F, Option, Int]
        p.property("purity.stream") = purity[F, Stream, Int]

        p.property("sequential fusion") = resizeProp(sequentialFusion[F, Option, List, Int, Int, Int], 3)
        // TODO naturality, parallelFusion
      }
  }

  object bifoldable {
    def leftFMConsistent[F[_, _], A, B](implicit F: Bifoldable[F], afa: Arbitrary[F[A, B]], ea: Equal[A], eb: Equal[B]) =
      forAll(F.bifoldableLaw.leftFMConsistent[A, B] _)

    def rightFMConsistent[F[_, _], A, B](implicit F: Bifoldable[F], afa: Arbitrary[F[A, B]], ea: Equal[A], eb: Equal[B]) =
      forAll(F.bifoldableLaw.rightFMConsistent[A, B] _)

    def laws[F[_, _]](implicit fa: Arbitrary[F[Int, Int]], F: Bifoldable[F]): Properties =
      newProperties("bifoldable") { p =>
        p.property("consistent left bifold") = leftFMConsistent[F, Int, Int]
        p.property("consistent right bifold") = rightFMConsistent[F, Int, Int]
        implicit val left = F.leftFoldable[Int]
        implicit val right = F.rightFoldable[Int]
        p.include(foldable.laws[F[?, Int]])
        p.include(foldable.laws[F[Int, ?]])
      }
  }

  object bitraverse {
    def laws[F[_, _]](implicit fa: Arbitrary[F[Int,Int]], F: Bitraverse[F], EF: Equal[F[Int, Int]]): Properties =
      newProperties("bitraverse") { p =>
        p.include(bifoldable.laws[F])
        implicit val left = F.leftTraverse[Int]
        implicit val right = F.rightTraverse[Int]
        p.include(traverse.laws[F[?, Int]])
        p.include(traverse.laws[F[Int, ?]])
      }
  }

  object plus {
    def associative[F[_], X](implicit f: Plus[F], afx: Arbitrary[F[X]], ef: Equal[F[X]]) =
      forAll(f.plusLaw.associative[X] _)

    def laws[F[_]](implicit F: Plus[F], afx: Arbitrary[F[Int]], ef: Equal[F[Int]]): Properties =
      newProperties("plus") { p =>
        p.include(semigroup.laws[F[Int]](F.semigroup[Int], implicitly, implicitly))
        p.property("associative") = associative[F, Int]
      }
  }

  object plusEmpty {
    def leftPlusIdentity[F[_], X](implicit f: PlusEmpty[F], afx: Arbitrary[F[X]], ef: Equal[F[X]]) =
      forAll(f.plusEmptyLaw.leftPlusIdentity[X] _)

    def rightPlusIdentity[F[_], X](implicit f: PlusEmpty[F], afx: Arbitrary[F[X]], ef: Equal[F[X]]) =
      forAll(f.plusEmptyLaw.rightPlusIdentity[X] _)

    def laws[F[_]](implicit F: PlusEmpty[F], afx: Arbitrary[F[Int]], af: Arbitrary[Int => Int], ef: Equal[F[Int]]): Properties =
      newProperties("plusEmpty") { p =>
        p.include(plus.laws[F])
        p.include(monoid.laws[F[Int]](F.monoid[Int], implicitly, implicitly))
        p.property("left plus identity") = leftPlusIdentity[F, Int]
        p.property("right plus identity") = rightPlusIdentity[F, Int]
      }
  }

  object isEmpty {
    def emptyIsEmpty[F[_], X](implicit f: IsEmpty[F]):Prop =
      f.isEmptyLaw.emptyIsEmpty[X]

    def emptyPlusIdentity[F[_], X](implicit f: IsEmpty[F], afx: Arbitrary[F[X]]) =
      forAll(f.isEmptyLaw.emptyPlusIdentity[X] _)

    def laws[F[_]](implicit F: IsEmpty[F], afx: Arbitrary[F[Int]], ef: Equal[F[Int]]): Properties =
      newProperties("isEmpty") { p =>
        p.include(plusEmpty.laws[F])
        p.property("empty is empty") = emptyIsEmpty[F, Int]
        p.property("empty plus identity") =  emptyPlusIdentity[F, Int]
      }
  }

  object monadPlus {
    def emptyMap[F[_], X](implicit f: MonadPlus[F], afx: Arbitrary[X => X], ef: Equal[F[X]]) =
      forAll(f.monadPlusLaw.emptyMap[X] _)

    def leftZero[F[_], X](implicit F: MonadPlus[F], afx: Arbitrary[X => F[X]], ef: Equal[F[X]]) =
      forAll(F.monadPlusLaw.leftZero[X] _)

    def rightZero[F[_], X](implicit F: MonadPlus[F], afx: Arbitrary[F[X]], ef: Equal[F[X]]) =
      forAll(F.strongMonadPlusLaw.rightZero[X] _)

    def laws[F[_]](implicit F: MonadPlus[F], afx: Arbitrary[F[Int]], afy: Arbitrary[F[Int => Int]], ef: Equal[F[Int]]): Properties =
      newProperties("monad plus") { p =>
        p.include(monad.laws[F])
        p.include(plusEmpty.laws[F])
        p.property("empty map") = emptyMap[F, Int]
        p.property("left zero") = leftZero[F, Int]
      }
    def strongLaws[F[_]](implicit F: MonadPlus[F], afx: Arbitrary[F[Int]], afy: Arbitrary[F[Int => Int]], ef: Equal[F[Int]]) =
      newProperties("monad plus") { p =>
        p.include(laws[F])
        p.property("right zero") = rightZero[F, Int]
      }
  }

  object foldable {
    def leftFMConsistent[F[_], A](implicit F: Foldable[F], afa: Arbitrary[F[A]], ea: Equal[A]) =
      forAll(F.foldableLaw.leftFMConsistent[A] _)

    def rightFMConsistent[F[_], A](implicit F: Foldable[F], afa: Arbitrary[F[A]], ea: Equal[A]) =
      forAll(F.foldableLaw.rightFMConsistent[A] _)

    def laws[F[_]](implicit fa: Arbitrary[F[Int]], F: Foldable[F], EA: Equal[Int]): Properties =
      newProperties("foldable") { p =>
        p.property("consistent left fold") = leftFMConsistent[F, Int]
        p.property("consistent right fold") = rightFMConsistent[F, Int]
      }
  }

  object foldable1 {
    type Pair[A] = (A, A)

    def leftFM1Consistent[F[_], A](implicit F: Foldable1[F], fa: Arbitrary[F[A]], ea: Equal[A]) =
      forAll(F.foldable1Law.leftFM1Consistent[A] _)

    def rightFM1Consistent[F[_], A](implicit F: Foldable1[F], fa: Arbitrary[F[A]], ea: Equal[A]) =
      forAll(F.foldable1Law.rightFM1Consistent[A] _)

    def laws[F[_]](implicit fa: Arbitrary[F[Int]],
                   F: Foldable1[F], EA: Equal[Int]): Properties =
      newProperties("foldable1") { p =>
        p.include(foldable.laws[F])
        p.property("consistent left fold1") = leftFM1Consistent[F, Int]
        p.property("consistent right fold1") = rightFM1Consistent[F, Int]
      }
  }

  object traverse1 {
    def identityTraverse1[F[_], X, Y](implicit f: Traverse1[F], afx: Arbitrary[F[X]], axy: Arbitrary[X => Y], ef: Equal[F[Y]]) =
      forAll(f.traverse1Law.identityTraverse1[X, Y] _)

    def sequentialFusion1[F[_], N[_], M[_], A, B, C](implicit fa: Arbitrary[F[A]], amb: Arbitrary[A => M[B]], bnc: Arbitrary[B => N[C]],
                                                      F: Traverse1[F], N: Apply[N], M: Apply[M], MN: Equal[M[N[F[C]]]]): Prop =
      forAll(F.traverse1Law.sequentialFusion1[N, M, A, B, C] _)

    def naturality1[F[_], N[_], M[_], A](nat: (M ~> N))
                                       (implicit fma: Arbitrary[F[M[A]]], F: Traverse1[F], N: Apply[N], M: Apply[M], NFA: Equal[N[F[A]]]): Prop =
      forAll(F.traverse1Law.naturality1[N, M, A](nat) _)

    def parallelFusion1[F[_], N[_], M[_], A, B](implicit fa: Arbitrary[F[A]], amb: Arbitrary[A => M[B]], anb: Arbitrary[A => N[B]],
                                               F: Traverse1[F], N: Apply[N], M: Apply[M], MN: Equal[(M[F[B]], N[F[B]])]): Prop =
      forAll(F.traverse1Law.parallelFusion1[N, M, A, B] _)

    def laws[F[_]](implicit fa: Arbitrary[F[Int]], F: Traverse1[F], EF: Equal[F[Int]]): Properties =
      newProperties("traverse1") { p =>
          p.include(traverse.laws[F])
          p.include(foldable1.laws[F])
          p.property("identity traverse1") = identityTraverse1[F, Int, Int]

        import std.list._, std.option._

          p.property("sequential fusion (1)") = resizeProp(sequentialFusion1[F, Option, List, Int, Int, Int], 3)
        // TODO naturality1, parallelFusion1
      }
  }

  object zip {
    def zipPreservation[F[_], X](implicit F: Zip[F], FF: Functor[F], afx: Arbitrary[F[X]], ef: Equal[F[X]]) =
      forAll(F.zipLaw.zipPreservation[X] _)

    def zipSymmetric[F[_], X, Y](implicit F: Zip[F], FF: Functor[F], afx: Arbitrary[F[X]], afy: Arbitrary[F[Y]], ef: Equal[F[X]]) =
      forAll(F.zipLaw.zipSymmetric[X, Y] _)

    def laws[F[_]](implicit fa: Arbitrary[F[Int]], F: Zip[F], FF: Functor[F], EF: Equal[F[Int]]): Properties =
      newProperties("zip") { p =>
        p.property("preserves structure") = zipPreservation[F, Int]
        p.property("symmetry") = zipSymmetric[F, Int, Int]
      }
  }

  object contravariant {
    def identity[F[_], X](implicit F: Contravariant[F], afx: Arbitrary[F[X]], ef: Equal[F[X]]) =
      forAll(F.contravariantLaw.identity[X] _)

    def composite[F[_], X, Y, Z](implicit F: Contravariant[F], af: Arbitrary[F[Z]], axy: Arbitrary[(X => Y)],
                                   ayz: Arbitrary[(Y => Z)], ef: Equal[F[X]]) =
      forAll(F.contravariantLaw.composite[Z, Y, X] _)

    def laws[F[_]](implicit F: Contravariant[F], af: Arbitrary[F[Int]], axy: Arbitrary[(Int => Int)],
                   ef: Equal[F[Int]]): Properties =
      newProperties("contravariant") { p =>
        p.include(invariantFunctor.laws[F])
        p.property("identity") = identity[F, Int]
        p.property("composite") = composite[F, Int, Int, Int]
      }
  }

  object divide {
    def composition[F[_], A](implicit F: Divide[F], A: Arbitrary[F[A]], E: Equal[F[A]]) =
      forAll(F.divideLaw.composition[A] _)

    def laws[F[_]](implicit F: Divide[F], af: Arbitrary[F[Int]], axy: Arbitrary[Int => Int],
                   ef: Equal[F[Int]]): Properties =
      newProperties("divide") { p =>
        p.include(contravariant.laws[F])
        p.property("composition") = composition[F, Int]
      }
  }

  object divisible {
    def rightIdentity[F[_], A](implicit F: Divisible[F], A: Arbitrary[F[A]], E: Equal[F[A]]) =
      forAll(F.divisibleLaw.rightIdentity[A] _)

    def leftIdentity[F[_], A](implicit F: Divisible[F], A: Arbitrary[F[A]], E: Equal[F[A]]) =
      forAll(F.divisibleLaw.leftIdentity[A] _)

    def laws[F[_]](implicit F: Divisible[F], af: Arbitrary[F[Int]], axy: Arbitrary[Int => Int],
                   ef: Equal[F[Int]]): Properties =
      newProperties("divisible") { p =>
        p.include(divide.laws[F])
        p.property("right identity") = rightIdentity[F, Int]
        p.property("left identity") = leftIdentity[F, Int]
      }
  }

  object compose {
    def associative[=>:[_, _], A, B, C, D](implicit ab: Arbitrary[A =>: B], bc: Arbitrary[B =>: C],
                                           cd: Arbitrary[C =>: D], C: Compose[=>:], E: Equal[A =>: D]) =
      forAll(C.composeLaw.associative[A, B, C, D] _)

    def laws[=>:[_, _]](implicit C: Compose[=>:], AB: Arbitrary[Int =>: Int], E: Equal[Int =>: Int]): Properties =
      newProperties("compose") { p =>
        p.property("associative") = associative[=>:, Int, Int, Int, Int]
        p.include(semigroup.laws[Int =>: Int](C.semigroup[Int], implicitly, implicitly))
      }
  }

  object category {
    def leftIdentity[=>:[_, _], A, B](implicit ab: Arbitrary[A =>: B], C: Category[=>:], E: Equal[A =>: B]) =
      forAll(C.categoryLaw.leftIdentity[A, B] _)

    def rightIdentity[=>:[_, _], A, B](implicit ab: Arbitrary[A =>: B], C: Category[=>:], E: Equal[A =>: B]) =
      forAll(C.categoryLaw.rightIdentity[A, B] _)

    def laws[=>:[_, _]](implicit C: Category[=>:], AB: Arbitrary[Int =>: Int], E: Equal[Int =>: Int]): Properties =
      newProperties("category") { p =>
        p.include(compose.laws[=>:])
        p.property("left identity") = leftIdentity[=>:, Int, Int]
        p.property("right identity") = rightIdentity[=>:, Int, Int]
        p.include(monoid.laws[Int =>: Int](C.monoid[Int], implicitly, implicitly))
      }
  }

  object associative {
    def leftRight[=>:[_, _], X, Y, Z](implicit F: Associative[=>:], af: Arbitrary[X =>: (Y =>: Z)], ef: Equal[X =>: (Y =>: Z)]) =
      forAll(F.associativeLaw.leftRight[X, Y, Z] _)

    def rightLeft[=>:[_, _], X, Y, Z](implicit F: Associative[=>:], af: Arbitrary[(X =>: Y) =>: Z], ef: Equal[(X =>: Y) =>: Z]) =
      forAll(F.associativeLaw.rightLeft[X, Y, Z] _)

    def laws[=>:[_, _]](implicit F: Associative[=>:],
                        al: Arbitrary[(Int =>: Int) =>: Int], ar: Arbitrary[Int =>: (Int =>: Int)],
                        el: Equal[(Int =>: Int) =>: Int], er: Equal[Int =>: (Int =>: Int)]): Properties =
      newProperties("associative") { p =>
        p.property("left and then right reassociation is identity") = leftRight[=>:, Int, Int, Int]
        p.property("right and then left reassociation is identity") = rightLeft[=>:, Int, Int, Int]
      }
  }

  object bifunctor {
    def laws[F[_, _]](implicit F: Bifunctor[F], E: Equal[F[Int, Int]], af: Arbitrary[F[Int, Int]],
                      axy: Arbitrary[(Int => Int)]): Properties =
      newProperties("bifunctor") { p =>
        p.include(functor.laws[F[?, Int]](F.leftFunctor[Int], implicitly, implicitly, implicitly))
        p.include(functor.laws[F[Int, ?]](F.rightFunctor[Int], implicitly, implicitly, implicitly))
      }
  }

  object lens {
    def identity[A, B](l: Lens[A, B])(implicit A: Arbitrary[A], EA: Equal[A]) = forAll(l.lensLaw.identity _)
    def retention[A, B](l: Lens[A, B])(implicit A: Arbitrary[A], B: Arbitrary[B], EB: Equal[B]) = forAll(l.lensLaw.retention _)
    def doubleSet[A, B](l: Lens[A, B])(implicit A: Arbitrary[A], B: Arbitrary[B], EB: Equal[A]) = forAll(l.lensLaw.doubleSet _)

    def laws[A, B](l: Lens[A, B])(implicit A: Arbitrary[A], B: Arbitrary[B], EA: Equal[A], EB: Equal[B]): Properties =
      newProperties("lens") { p =>
        p.property("identity") = identity[A, B](l)
        p.property("retention") = retention[A, B](l)
        p.property("doubleSet") = doubleSet[A, B](l)
      }
  }

  object monadError {
    def raisedErrorsHandled[F[_], E, A](implicit me: MonadError[F, E], eq: Equal[F[A]], ae: Arbitrary[E], afea: Arbitrary[E => F[A]]) =
      forAll(me.monadErrorLaw.raisedErrorsHandled[A] _)
    def errorsRaised[F[_], E, A](implicit me: MonadError[F, E], eq: Equal[F[A]], ae: Arbitrary[E], aa: Arbitrary[A]) =
      forAll(me.monadErrorLaw.errorsRaised[A] _)
    def errorsStopComputation[F[_], E, A](implicit me: MonadError[F, E], eq: Equal[F[A]], ae: Arbitrary[E], aa: Arbitrary[A]) =
      forAll(me.monadErrorLaw.errorsStopComputation[A] _)

    def laws[F[_], E](implicit me: MonadError[F, E], am: Arbitrary[F[Int]], afap: Arbitrary[F[Int => Int]], aeq: Equal[F[Int]], ae: Arbitrary[E]): Properties =
      newProperties("monad error"){ p =>
        p.include(monad.laws[F])
        p.property("raisedErrorsHandled") = raisedErrorsHandled[F, E, Int]
        p.property("errorsRaised") = errorsRaised[F, E, Int]
        p.property("errorsStopComputation") = errorsStopComputation[F, E, Int]
      }
  }
}

Other Scala examples (source code examples)

Here is a short list of links related to this Scala ScalazProperties.scala source code file:

... this post is sponsored by my books ...

#1 New Release!

FP Best Seller

 

new blog posts

 

Copyright 1998-2024 Alvin Alexander, alvinalexander.com
All Rights Reserved.

A percentage of advertising revenue from
pages under the /java/jwarehouse URI on this website is
paid back to open source projects.